Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373062

RESUMO

Ductal carcinoma in situ (DCIS) is the preinvasive form of breast cancer (BC). It is disputed whether all cases of DCIS require extensive treatment as the overall risk of progression to BC is estimated at 40%. Therefore, the crucial objective for researchers is to identify DCIS with significant risk of transformation into BC. Dendritic cells (DC) are professional antigen presenting cells and as such play a pivotal role in the formation of immune cells that infiltrate in breast tumors. The aim of this study was to investigate the relationship between the density of DCs with different superficial antigens (CD1a, CD123, DC-LAMP, DC-SIGN) and various histopathological characteristics of DCIS. Our evaluation indicated that CD123+ and DC-LAMP+ cells were strongly associated with maximal tumor size, grading and neoductgenesis. Together with CD1a+ cells, they were negatively correlated with hormonal receptors expression. Furthermore, the number of DC-LAMP+ cells was higher in DCIS with comedo necrosis, ductal spread, lobular cancerization as well as comedo-type tumors, while CD1a+ cells were abundant in cases with Paget disease. We concluded that different subpopulations of DCs relate to various characteristics of DCIS. Of the superficial DCs markers, DC-LAMP seems particularly promising as a target for further research in this area.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/metabolismo , Subunidade alfa de Receptor de Interleucina-3 , Neoplasias da Mama/metabolismo , Células Dendríticas/metabolismo , Carcinoma Ductal de Mama/patologia
2.
Medicina (Kaunas) ; 55(8)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443222

RESUMO

Sedentary life style is considered to be an independent risk factor for many disorders, including development of type 2 diabetes, obesity, immune dysfunction, asthma, and neurological or coronary heart disease. Irisin is released from myocytes during physical activity, and acts as a link between muscles and other tissues and organs. This myokine is produced as a result of proteolytic cleavage of FNDC5 protein present in the membrane of myocytes. Secretion of irisin is regulated by N-linked oligosaccharides attached to the protein molecule. The two N-glycan molecules, which constitute a significant part of the irisin glycoprotein, regulate the browning of adipocytes, which is the most important function of irisin. A receptor specific for irisin has still not been discovered. In some tissues irisin probably acts via integrins, which are widely expressed transmembrane receptors. Many studies have confirmed the multifunctional role of irisin and the beneficial effects of this molecule on body homeostasis. Irisin reduces systemic inflammation, maintains the balance between resorption and bone formation, and modulates metabolic processes and the functioning of the nervous system. It suppresses the expression and release of pro-inflammatory cytokines in obese individuals and attenuates inflammation in adipose tissue. The impact of irisin on cancer cell proliferation, migration, and invasion has also been demonstrated in numerous studies, which proves its role in carcinogenesis. Owing to these pleiotropic and beneficial properties, irisin may be a potential option to prevent and treat civilization-related diseases which are, nowadays, considered to be the major health problems in Western societies.


Assuntos
Exercício Físico/fisiologia , Fibronectinas/metabolismo , Células Musculares/metabolismo , Obesidade/fisiopatologia , Tecido Adiposo/metabolismo , Glicosilação , Humanos , Inflamação
3.
Endokrynol Pol ; 70(1): 86-100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30843179

RESUMO

Thyroid-stimulating hormone receptor (TSHR) is a typical membrane receptor with 7-transmembrane helix domain (7TMR), coupled to the G protein. The mature receptor, present in the cell membrane, is composed of the A subunit comprising a large extracellular domain, and the B subunit, which consists of a short extracellular fragment anchored in the cell membrane and an intracellular part. The TSH receptor is subject to numerous post-translational modifications that determine its final structure and significantly affect its activity. One of them is glycosylation. TSHR is abundantly N-glycosylated, due to the presence of six N-glycosylation sites in the extracellular domain (Asn77, Asn99, Asn113, Asn177, Asn198, Asn302), mostly evolutionarily conserved. N-glycans constitute 30-40% of the receptor molecular weight. The glycans are necessary for the receptor trafficking to the plasma membrane and binding of TSH to the receptor. Fucosylated and sialylated N-oligosaccharides were found on TSHR molecules. The increased sialylation of TSHR glycans correlates positively with the receptor binding ability and prolongs the time of receptor incorporation into the cell membrane. TSHR is the main autoantigen in Graves' disease (GD), one of the thyroid autoimmune diseases. One hypothesis assumes that the higher N-glycosylation of THSR in human compared to animals influences the breaking of autotolerance and GD development. N-oligosaccharides are the important part of THSR molecule, necessary for the proper functioning of receptors and probably involved in thyroid autoimmunity in GD.


Assuntos
Autoantígenos , Doença de Graves/metabolismo , Processamento de Proteína Pós-Traducional , Receptores da Tireotropina/metabolismo , Glicosilação , Doença de Graves/imunologia , Humanos , Receptores da Tireotropina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA