Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Biophys Res Commun ; 516(4): 1097-1102, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31280862

RESUMO

The maturation of chondrocytes is strictly regulated for proper endochondral bone formation. Although recent studies have revealed that intracellular metabolic processes regulate the proliferation and differentiation of cells, little is known about how changes in metabolite levels regulate chondrocyte maturation. To identify the metabolites which regulate chondrocyte maturation, we performed a metabolome analysis on chondrocytes of Sik3 knockout mice, in which chondrocyte maturation is delayed. Among the metabolites, acetyl-CoA was decreased in this model. Immunohistochemical analysis of the Sik3 knockout chondrocytes indicated that the expression levels of phospho-pyruvate dehydrogenase (phospho-Pdh), an inactivated form of Pdh, which is an enzyme that converts pyruvate to acetyl-CoA, and of Pdh kinase 4 (Pdk4), which phosphorylates Pdh, were increased. Inhibition of Pdh by treatment with CPI613 delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture. These results collectively suggest that decreasing the acetyl-CoA level is a cause and not result of the delayed chondrocyte maturation. Sik3 appears to increase the acetyl-CoA level by decreasing the expression level of Pdk4. Blocking ATP synthesis in the TCA cycle by treatment with rotenone also delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture, suggesting the possibility that depriving acetyl-CoA as a substrate for the TCA cycle is responsible for the delayed maturation. Our finding of acetyl-CoA as a regulator of chondrocyte maturation could contribute to understanding the regulatory mechanisms controlling endochondral bone formation by metabolites.


Assuntos
Acetilcoenzima A/metabolismo , Condrócitos/metabolismo , Osteogênese , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Condrócitos/citologia , Condrogênese , Feminino , Deleção de Genes , Metaboloma , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
2.
Biomedicines ; 12(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38790935

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a cancer-targeted treatment that uses a photosensitizer (PS) and irradiation of a specific wavelength to exert cytotoxic effects. To enhance the antitumor effect against head and neck squamous cell carcinoma (HNSCC), we developed a new phototherapy, intelligent targeted antibody phototherapy (iTAP). This treatment uses a combination of immunotoxin (IT) and a PS for PDT and light irradiation. In our prior study, we demonstrated that an immunotoxin (IT) consisting of an anti-ROBO1 antibody conjugated to saporin, when used in combination with the photosensitizer (PS) disulfonated aluminum phthalocyanine (AlPcS2a) and irradiated with light at the appropriate wavelength, resulted in increased cytotoxicity against head and neck squamous cell carcinoma (HNSCC) cells. ROBO1 is a receptor known to be involved in the progression of cancer. In this study, we newly investigate the iTAP targeting epidermal growth factor receptor (EGFR) which is widely used as a therapeutic target for HNSCC. METHODS: We checked the expression of EGFR in HNSCC cell lines, SAS, HO-1-u-1, Sa3, and HSQ-89. We analyzed the cytotoxicity of saporin-conjugated anti-EGFR antibody (cetuximab) (IT-Cmab), mono-L-aspartyl chlorin e6 (NPe6, talaporfin sodium), and light (664 nm) irradiation (i.e., iTAP) in SAS, HO-1-u-1, Sa3, and HSQ-89 cells. RESULTS: EGFR was expressed highly in Sa3, moderately in HO-1-u-1, SAS, and nearly not in HSQ-89. Cmab alone or IT-Cmab alone did not show cytotoxic effects in Sa3, HO-1-u-1, and HSQ-89 cells, which have moderate or low expression levels of EGFR protein. However, the iTAP method enhanced the cytotoxicity of IT-Cmab by the photodynamic effect in Sa3 and HO-1-u-1 cells, which have moderate levels of EGFR expression. CONCLUSION: Our study is the first to report on the iTAP method using IT-Cmab and NPe6 for HNSCC. The cytotoxic effects are enhanced in cell lines with moderate levels of EGFR protein expression, but not in nonexpressing cell lines, which is expected to expand the range of therapeutic windows and potentially reduce complications.

3.
J Oral Biosci ; 62(2): 147-154, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32464258

RESUMO

OBJECTIVES: Lactoferrin (LF) possesses diverse biological functions. We previously reported that bovine LF (bLF) attenuates lipopolysaccharide-induced bone resorption in osteoblasts. In addition to its ability to inhibit osteoclastogenesis, bLF has been implicated in stimulating bone formation. However, the molecular mechanisms of bLF in bone cell anabolism remain unclear. Here, we tried to analyse the molecular mechanisms involved in osteogenesis in the presence of bLF. METHODS: Alkaline phosphatase activity, Runx2 activity, gene expression, and Alizarin red staining were analyzed to evaluate the osteogenic differentiation status. The expression of the Smads and mitogen-activated protein kinase (MAPK) signaling molecules was analyzed via western blotting. Ex vivo organ cultures of mouse calvariae were performed to evaluate the effect of bLF on bone regeneration. RESULTS: bLF enhanced the osteoblastic differentiation of mesenchymal stem cells through activation of Smad2/3 and p38 MAPK, which increased the transcriptional activity of Runx2. bLF treatment also enhanced osteoblastic differentiation and mineralized nodule formation of osteoblast-lineage cells, and repaired bone defects ex vivo. Moreover, inhibition of Smad2/3 or p38 MAPK signaling reduced the anabolic effects of bLF. Together, these results suggested that bLF is a potent osteogenic factor, which mediates its function via activation of the Smad2/3 and p38 MAPK signaling pathways. CONCLUSIONS: Here, we described a novel function of bLF and its signal transduction mechanisms in osseous tissue. Along with inhibiting osteoclastogenesis, bLF may limit further osteoclast formation and contribute to bone mass enlargement. Thus, bLF represents a potentially valuable therapeutic agent for bone regeneration and destructive bone diseases.


Assuntos
Lactoferrina , Osteogênese , Animais , Diferenciação Celular , Camundongos , Osteoblastos , Osteoclastos , Proteína Smad2 , Proteína Smad3 , Proteínas Quinases p38 Ativadas por Mitógeno
4.
Tissue Eng Part A ; 25(5-6): 437-445, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30129877

RESUMO

IMPACT STATEMENT: Cartilage particles derived from human induced pluripotent stem cells (hiPS-Carts) are one candidate source for transplants for treatment of articular cartilage damage. This study shows that hiPS-Carts integrate with each other in an in vitro model and analyzed the course of the integration. The integration starts at the perichondrium-like membrane at around 1 week and then progresses to the central cartilage within 4-8 weeks. The results indicate that FGF18 secreted from the perichondrium-like membrane accelerates the initial step of integration. The findings contribute to understanding how hiPS-Carts form repair tissue and provide clue to accelerate healing after transplantation.


Assuntos
Cartilagem Articular/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Contagem de Células , Linhagem Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Membranas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Nat Commun ; 7: 10959, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009967

RESUMO

Osteoarthritis is a common debilitating joint disorder. Risk factors for osteoarthritis include age, which is associated with thinning of articular cartilage. Here we generate chondrocyte-specific salt-inducible kinase 3 (Sik3) conditional knockout mice that are resistant to osteoarthritis with thickened articular cartilage owing to a larger chondrocyte population. We also identify an edible Pteridium aquilinum compound, pterosin B, as a Sik3 pathway inhibitor. We show that either Sik3 deletion or intraarticular injection of mice with pterosin B inhibits chondrocyte hypertrophy and protects cartilage from osteoarthritis. Collectively, our results suggest Sik3 regulates the homeostasis of articular cartilage and is a target for the treatment of osteoarthritis, with pterosin B as a candidate therapeutic.


Assuntos
Antineoplásicos/farmacologia , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Indanos/farmacologia , Osteoartrite do Joelho/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Feminino , Humanos , Hipertrofia , Immunoblotting , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Tamanho do Órgão , Osteoartrite do Joelho/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA