Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 16(12): 1411-1419, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32778844

RESUMO

Epigenetic plasticity underpins cell potency, but the extent to which active turnover of DNA methylation contributes to such plasticity is not known, and the underlying pathways are poorly understood. Here we use metabolic labeling with stable isotopes and mass spectrometry to quantitatively address the global turnover of genomic 5-methyl-2'-deoxycytidine (mdC), 5-hydroxymethyl-2'-deoxycytidine (hmdC) and 5-formyl-2'-deoxycytidine (fdC) across mouse pluripotent cell states. High rates of mdC/hmdC oxidation and fdC turnover characterize a formative-like pluripotent state. In primed pluripotent cells, the global mdC turnover rate is about 3-6% faster than can be explained by passive dilution through DNA synthesis. While this active component is largely dependent on ten-eleven translocation (Tet)-mediated mdC oxidation, we unveil additional oxidation-independent mdC turnover, possibly through DNA repair. This process accelerates upon acquisition of primed pluripotency and returns to low levels in lineage-committed cells. Thus, in pluripotent cells, active mdC turnover involves both mdC oxidation-dependent and oxidation-independent processes.


Assuntos
5-Metilcitosina/metabolismo , Reparo do DNA , Desoxicitidina/análogos & derivados , Epigênese Genética , Genoma , Células-Tronco Pluripotentes/metabolismo , Animais , Isótopos de Carbono , Linhagem Celular , DNA/genética , DNA/metabolismo , Metilação de DNA , Desoxicitidina/metabolismo , Marcação por Isótopo , Camundongos , Camundongos Transgênicos , Oxirredução , Células-Tronco Pluripotentes/citologia
2.
Nat Chem Biol ; 14(1): 72-78, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29176672

RESUMO

Tet enzymes oxidize 5-methyl-deoxycytidine (mdC) to 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC) and 5-carboxy-dC (cadC) in DNA. It was proposed that fdC and cadC deformylate and decarboxylate, respectively, to dC over the course of an active demethylation process. This would re-install canonical dC bases at previously methylated sites. However, whether such direct C-C bond cleavage reactions at fdC and cadC occur in vivo remains an unanswered question. Here we report the incorporation of synthetic isotope- and (R)-2'-fluorine-labeled dC and fdC derivatives into the genome of cultured mammalian cells. Following the fate of these probe molecules using UHPLC-MS/MS provided quantitative data about the formed reaction products. The data show that the labeled fdC probe is efficiently converted into the corresponding labeled dC, most likely after its incorporation into the genome. Therefore, we conclude that fdC undergoes C-C bond cleavage in stem cells, leading to the direct re-installation of unmodified dC.


Assuntos
Citosina/análogos & derivados , DNA/metabolismo , Desoxicitidina/metabolismo , Animais , Isótopos de Carbono , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Citosina/química , Citosina/metabolismo , DNA/química , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Desmetilação , Desoxicitidina/química , Metilação , Camundongos , Isótopos de Nitrogênio , Oxirredução , Espectrometria de Massas em Tandem
3.
J Am Chem Soc ; 139(30): 10359-10364, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28715893

RESUMO

5-Formyl-dC (fdC) and 5-carboxy-dC (cadC) are newly discovered bases in the mammalian genome that are supposed to be substrates for base excision repair (BER) in the framework of active demethylation. The bases are recognized by the monofunctional thymine DNA glycosylase (Tdg), which cleaves the glycosidic bond of the bases to give potentially harmful abasic sites (AP-sites). Because of the turnover of fdC and cadC during cell state transitions, it is an open question to what extent such harmful AP-sites may accumulate during these processes. Here, we report the development of a new reagent that in combination with mass spectrometry (MS) allows us to quantify the levels of AP-sites. This combination also allowed the quantification of ß-elimination (ßE) products, which are repair intermediates of bifunctional DNA glycosylases. In combination with feeding of isotopically labeled nucleosides, we were able to trace the intermediates back to their original nucleobases. We show that, while the steady-state levels of fdC and cadC are substantially increased in Tdg-deficient cells, those of both AP- and ßE-sites are unaltered. The levels of the detected BER intermediates are 1 and 2 orders of magnitude lower than those of cadC and fdC, respectively. Thus, neither the presence of fdC nor that of cadC in stem cells leads to the accumulation of harmful AP- and ßE-site intermediates.


Assuntos
Desoxicitidina/análogos & derivados , Células-Tronco Embrionárias/química , Animais , Desoxicitidina/síntese química , Desoxicitidina/química , Camundongos , Estrutura Molecular
4.
Angew Chem Int Ed Engl ; 56(37): 11268-11271, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28371147

RESUMO

Until recently, it was believed that the genomes of higher organisms contain, in addition to the four canonical DNA bases, only 5-methyl-dC (m5 dC) as a modified base to control epigenetic processes. In recent years, this view has changed dramatically with the discovery of 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC) in DNA from stem cells and brain tissue. N6 -methyldeoxyadenosine (m6 dA) is the most recent base reported to be present in the genome of various eukaryotic organisms. This base, together with N4 -methyldeoxycytidine (m4 dC), was first reported to be a component of bacterial genomes. In this work, we investigated the levels and distribution of these potentially epigenetically relevant DNA bases by using a novel ultrasensitive UHPLC-MS method. We further report quantitative data for m5 dC, hmdC, fdC, and cadC, but we were unable to detect either m4 dC or m6 dA in DNA isolated from mouse embryonic stem cells or brain and liver tissue, which calls into question their epigenetic relevance.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Citidina/análogos & derivados , Citidina/metabolismo , Genoma , Fígado/metabolismo , Espectrometria de Massas/métodos , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Chlamydomonas reinhardtii/genética , DNA/genética , Epigênese Genética , Limite de Detecção , Camundongos , Synechocystis/genética
5.
Nat Chem Biol ; 10(7): 574-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24838012

RESUMO

Ten eleven translocation (Tet) enzymes oxidize the epigenetically important DNA base 5-methylcytosine (mC) stepwise to 5-hydroxymethylcytosine (hmC), 5-formylcytosine and 5-carboxycytosine. It is currently unknown whether Tet-induced oxidation is limited to cytosine-derived nucleobases or whether other nucleobases are oxidized as well. We synthesized isotopologs of all major oxidized pyrimidine and purine bases and performed quantitative MS to show that Tet-induced oxidation is not limited to mC but that thymine is also a substrate that gives 5-hydroxymethyluracil (hmU) in mouse embryonic stem cells (mESCs). Using MS-based isotope tracing, we show that deamination of hmC does not contribute to the steady-state levels of hmU in mESCs. Protein pull-down experiments in combination with peptide tracing identifies hmU as a base that influences binding of chromatin remodeling proteins and transcription factors, suggesting that hmU has a specific function in stem cells besides triggering DNA repair.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Pentoxil (Uracila)/análogos & derivados , Proteínas Proto-Oncogênicas/metabolismo , Timina/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Sequência de Bases , Isótopos de Carbono , Montagem e Desmontagem da Cromatina , Cromatografia Líquida , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Embrionárias/citologia , Expressão Gênica , Camundongos , Dados de Sequência Molecular , Oxirredução , Pentoxil (Uracila)/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Espectrometria de Massas por Ionização por Electrospray , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA