Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(17): 171501, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38728711

RESUMO

The shortest distance around the Universe through us is unlikely to be much larger than the horizon diameter if microwave background anomalies are due to cosmic topology. We show that observational constraints from the lack of matched temperature circles in the microwave background leave many possibilities for such topologies. We evaluate the detectability of microwave background multipole correlations for sample cases. Searches for topology signatures in observational data over the large space of possible topologies pose a formidable computational challenge.

2.
Phys Rev Lett ; 114(15): 151302, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933304

RESUMO

We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

3.
Phys Rev Lett ; 112(19): 191302, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24877926

RESUMO

The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision.

4.
Phys Rev Lett ; 109(4): 041101, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23006072

RESUMO

Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time present strong evidence for motions of galaxy clusters and groups via microwave background temperature distortions due to the kinematic Sunyaev-Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. We measure the mean pairwise momentum of clusters, with a probability of the signal being due to random errors of 0.002, and the signal is consistent with the growth of cosmic structure in the standard model of cosmology.

5.
Phys Rev Lett ; 106(19): 191301, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21668139

RESUMO

For observers moving with respect to the cosmic rest frame, the microwave background temperature fluctuations will no longer be statistically isotropic. Aside from the familiar temperature dipole, an observer's velocity will also induce changes in the temperature angular correlation function and create nonzero off-diagonal correlations between multipole moments. We show that both of these effects should be detectable in future full-sky maps from the Planck satellite, and can constrain modifications of the standard cosmological model proposed to explain anomalous current observations.

6.
Phys Rev Lett ; 107(2): 021301, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797590

RESUMO

We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.

7.
Phys Rev Lett ; 107(2): 021302, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797591

RESUMO

For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA