Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 9(6): e1003553, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23785299

RESUMO

Cancer is considered an outcome of decades-long clonal evolution fueled by acquisition of somatic genomic abnormalities (SGAs). Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce cancer risk, including risk of progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). However, the cancer chemopreventive mechanisms of NSAIDs are not fully understood. We hypothesized that NSAIDs modulate clonal evolution by reducing SGA acquisition rate. We evaluated thirteen individuals with BE. Eleven had not used NSAIDs for 6.2±3.5 (mean±standard deviation) years and then began using NSAIDs for 5.6±2.7 years, whereas two had used NSAIDs for 3.3±1.4 years and then discontinued use for 7.9±0.7 years. 161 BE biopsies, collected at 5-8 time points over 6.4-19 years, were analyzed using 1Million-SNP arrays to detect SGAs. Even in the earliest biopsies there were many SGAs (284±246 in 10/13 and 1442±560 in 3/13 individuals) and in most individuals the number of SGAs changed little over time, with both increases and decreases in SGAs detected. The estimated SGA rate was 7.8 per genome per year (95% support interval [SI], 7.1-8.6) off-NSAIDs and 0.6 (95% SI 0.3-1.5) on-NSAIDs. Twelve individuals did not progress to EA. In ten we detected 279±86 SGAs affecting 53±30 Mb of the genome per biopsy per time point and in two we detected 1,463±375 SGAs affecting 180±100 Mb. In one individual who progressed to EA we detected a clone having 2,291±78 SGAs affecting 588±18 Mb of the genome at three time points in the last three of 11.4 years of follow-up. NSAIDs were associated with reduced rate of acquisition of SGAs in eleven of thirteen individuals. Barrett's cells maintained relative equilibrium level of SGAs over time with occasional punctuations by expansion of clones having massive amount of SGAs.


Assuntos
Adenocarcinoma/genética , Anti-Inflamatórios não Esteroides/administração & dosagem , Esôfago de Barrett/genética , Evolução Clonal/genética , Instabilidade Genômica/efeitos dos fármacos , Adenocarcinoma/patologia , Idoso , Esôfago de Barrett/patologia , Biópsia , Evolução Clonal/efeitos dos fármacos , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo de Nucleotídeo Único
2.
Cancer Prev Res (Phila) ; 7(1): 114-27, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24253313

RESUMO

All cancers are believed to arise by dynamic, stochastic somatic genomic evolution with genome instability, generation of diversity, and selection of genomic alterations that underlie multistage progression to cancer. Advanced esophageal adenocarcinomas have high levels of somatic copy number alterations. Barrett's esophagus is a risk factor for developing esophageal adenocarcinoma, and somatic chromosomal alterations (SCA) are known to occur in Barrett's esophagus. The vast majority (∼95%) of individuals with Barrett's esophagus do not progress to esophageal adenocarcinoma during their lifetimes, but a small subset develop esophageal adenocarcinoma, many of which arise rapidly even in carefully monitored patients without visible endoscopic abnormalities at the index endoscopy. Using a well-designed, longitudinal case-cohort study, we characterized SCA as assessed by single-nucleotide polymorphism arrays over space and time in 79 "progressors" with Barrett's esophagus as they approach the diagnosis of cancer and 169 "nonprogressors" with Barrett's esophagus who did not progress to esophageal adenocarcinoma over more than 20,425 person-months of follow-up. The genomes of nonprogressors typically had small localized deletions involving fragile sites and 9p loss/copy neutral LOH that generate little genetic diversity and remained relatively stable over prolonged follow-up. As progressors approach the diagnosis of cancer, their genomes developed chromosome instability with initial gains and losses, genomic diversity, and selection of SCAs followed by catastrophic genome doublings. Our results support a model of differential disease dynamics in which nonprogressor genomes largely remain stable over prolonged periods, whereas progressor genomes evolve significantly increased SCA and diversity within four years of esophageal adenocarcinoma diagnosis, suggesting a window of opportunity for early detection.


Assuntos
Esôfago de Barrett/genética , Aberrações Cromossômicas , Adenocarcinoma/genética , Adulto , Idoso , Biópsia , Estudos de Casos e Controles , Instabilidade Cromossômica , Progressão da Doença , Endoscopia , Neoplasias Esofágicas/genética , Feminino , Genoma Humano , Humanos , Estudos Longitudinais , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA