Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 72(3): 426-443.e12, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401430

RESUMO

Protein phase separation by low-complexity, intrinsically disordered domains generates membraneless organelles and links to neurodegeneration. Cellular prion protein (PrPC) contains such domains, causes spongiform degeneration, and is a receptor for Alzheimer's amyloid-ß oligomers (Aßo). Here, we show that PrPC separates as a liquid phase, in which α-helical Thr become unfolded. At the cell surface, PrPC Lys residues interact with Aßo to create a hydrogel containing immobile Aßo and relatively mobile PrPC. The Aßo/PrP hydrogel has a well-defined stoichiometry and dissociates with excess Aßo. NMR studies of hydrogel PrPC reveal a distinct α-helical conformation for natively unfolded amino-terminal Gly and Ala residues. Aßo/PrP hydrogel traps signal-transducing mGluR5 on the plasma membrane. Recombinant PrPC extracts endogenous Aßo from human Alzheimer's soluble brain lysates into hydrogel, and a PrPC antagonist releases Aßo from endogenous brain hydrogel. Thus, coupled phase and conformational transitions of PrPC are driven by Aß species from Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Proteínas PrPC/química , Proteínas PrPC/fisiologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo , Células COS , Linhagem Celular , Membrana Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Hidrogéis , Imageamento por Ressonância Magnética/métodos , Conformação Molecular , Neurônios , Príons/química , Príons/fisiologia , Ligação Proteica , Receptor de Glutamato Metabotrópico 5 , Transdução de Sinais
2.
J Am Chem Soc ; 146(40): 27903-27914, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39326869

RESUMO

Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrPC) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid-co-maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrPC and amyloid-ß oligomers (Aßo). We show that PSCMA can induce reentrant LLPS of PrPC and lower the saturation concentration (Csat) of PrPC by 100-fold. Regardless of the induction method, PrPC molecules subsequently undergo a maturation process to restrict molecular motion in a more solid-like state. The PSCMA-induced LLPS of PrPC stabilizes the intermediate LLPS conformational state detected by NMR, though the final matured ß-sheet-rich state of PrPC is indistinguishable between induction conditions. The disease-associated E200 K mutation of PrPC also accelerates maturation. This post-LLPS shift in protein conformation and dynamics is a possible mechanism of LLPS-induced neurodegeneration.


Assuntos
Mutação , Humanos , Maleatos/química , Maleatos/farmacologia , Conformação Proteica , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/antagonistas & inibidores , Proteínas Priônicas/química , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Ácidos Sulfônicos/química , Separação de Fases
3.
J Biol Chem ; 294(15): 6042-6053, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30787106

RESUMO

Oligomeric assemblies of amyloid-ß (Aß) peptide (Aßo) in the brains of individuals with Alzheimer's disease (AD) are toxic to neuronal synapses. More than a dozen Aß receptor candidates have been suggested to be responsible for various aspects of the molecular pathology and memory impairment in mouse models of AD. A lack of consistent experimental design among previous studies of different receptor candidates limits evaluation of the relative roles of these candidates, producing some controversy within the field. Here, using cell-based assays with several Aß species, including Aßo from AD brains obtained by autopsy, we directly compared the Aß-binding capacity of multiple receptor candidates while accounting for variation in expression and confirming cell surface expression. In a survey of 15 reported Aß receptors, only cellular prion protein (PrPC), Nogo receptor 1 (NgR1), and leukocyte immunoglobulin-like receptor subfamily B member 2 (LilrB2) exhibited direct binding to synaptotoxic assemblies of synthetic Aß. Both PrPC and NgR1 preferentially bound synaptotoxic oligomers rather than nontoxic monomers, and the method of oligomer preparation did not significantly alter our binding results. Hippocampal neurons lacking both NgR1 and LilrB2 exhibited a partial reduction of Aßo binding, but this reduction was lower than in neurons lacking PrPC under the same conditions. Finally, binding studies with soluble Aßo from human AD brains revealed a strong affinity for PrPC, weak affinity for NgR1, and no detectable affinity for LilrB2. These findings clarify the relative contributions of previously reported Aß receptors under controlled conditions and highlight the prominence of PrPC as an Aß-binding site.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptor Nogo 1/metabolismo , Proteínas PrPC/metabolismo , Receptores Imunológicos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Receptor Nogo 1/genética , Proteínas PrPC/genética , Receptores Imunológicos/genética
4.
Nanotechnology ; 31(47): 475701, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32885794

RESUMO

The effect of Fe and Mn co-doping on the magnetic properties of the antiferromagnetic (AFM) NiO nanoparticles which offer large potential for different magnetic applications have been studied. The Rietveld refinement fitting of powder x-ray diffractometry (XRD) patterns confirmed the phase formation of face-centred cubic crystal structure of NiO and average crystallite size lies in the short range of 32-38 nm. The cavity and broadband ferromagnetic resonance (FMR) measurements taken at room temperature demonstrate the smaller local magnetic inhomogeneity for 4%Mn-4%Fe co-doped NiO nanoparticles as compared to undoped, single doped and co-doped with different concentration NiO nanoparticles. The M-H loops revealed the room temperature ferromagnetism-like behaviour for higher Fe doping concentration and lower Mn doping concentration. This can be attributed to the double exchange interaction. The zero field cooled (ZFC) and field cooled (FC) dc magnetization curves showed a small surface freezing peak (at[Formula: see text] at low temperatures and a blocking peak (at [Formula: see text] at higher temperatures. For samples with 4%Mn-4%Fe and 2%Mn-6%Fe, the blocking peak was found at a relatively high temperature in comparison to other samples. This can be attributed to the presence of magnetic exchange interactions which block the magnetic spins against a thermal increase. The ZFC AC-susceptibility showed three peaks; a surface freezing peak at Tf, a blocking peak at TB peak and an anomalous peak at Tx in between [Formula: see text] and [Formula: see text], which was found to be most prominent for the 4%Mn-4%Fe co-doped nanoparticles. The neutron diffraction pattern confirmed the AFM order of the core of the 4%Mn-4%Fe co-doped nanoparticles, which indicates an AFM coupling between the Fe2+ and Mn2+ ions and the Ni2+ ions through super-exchange interaction. Therefore, the origin of TX peak can be attributed to the ferromagnetic coupling between the Fe2+ and Mn2+ ions which has a maximum strength at equal concentration. Thus, small and equal doping concentration of Fe and Mn in NiO nanoparticles increase the magnetic homogeneity which makes them attractive for magnetic applications.

5.
Cereb Cortex ; 27(7): 3660-3674, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27365298

RESUMO

Synaptic loss is critical in Alzheimer's disease (AD), but the dynamics of synapse turnover are poorly defined. We imaged dendritic spines in transgenic APPswe/PSen1∆E9 (APP/PS1) cerebral cortex. Dendritic spine turnover is increased far from plaque in aged APP/PS1 mice, and in young APP/PS1 mice prior to plaque formation. Dysregulation occurs in the presence of soluble Aß oligomer and requires cellular prion protein (PrPC). APP/PS1 mice lack responsiveness of spine turnover to sensory stimulation. Critically, enhanced spine turnover is coupled with the loss of persistent spines starting early and continuing with age. To evaluate mechanisms of experience-independent supranormal spine turnover, we analyzed the transcriptome of young APP/PS1 mouse brain when turnover is altered but synapse density and memory are normal, and plaque and inflammation are absent. Early PrPC-dependent expression changes occur in synaptic and lipid-metabolizing genes. Thus, pathologic synaptic dysregulation underlying AD begins at a young age prior to Aß plaque.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Espinhas Dendríticas/patologia , Hipocampo/patologia , Placa Amiloide/patologia , Privação Sensorial , Fatores Etários , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imageamento Tridimensional , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neuroimagem , Placa Amiloide/etiologia , Presenilina-1/genética , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Tempo , Vibrissas/inervação
6.
Acta Neuropathol ; 133(5): 785-807, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28070672

RESUMO

Progranulin (PGRN) is implicated in Alzheimer's disease (AD) as well as frontotemporal lobar degeneration. Genetic studies demonstrate an association of the common GRN rs5848 variant that results in reduced PGRN levels with increased risk for AD. However, the mechanisms by which PGRN reduction from the GRN AD risk variant or mutation exacerbates AD pathophysiology remain ill defined. Here, we show that the GRN AD risk variant has no significant effects on florbetapir positron emission tomographic amyloid imaging and cerebrospinal fluid (CSF) Aß levels, whereas it is associated with increased CSF tau levels in human subjects of the Alzheimer's disease neuroimaging initiative studies. Consistent with the human data, subsequent analyses using the APPswe/PS1ΔE9 (APP/PS1) mouse model of cerebral amyloidosis show that PGRN deficiency has no exacerbating effects on Aß pathology. In contrast and unexpectedly, PGRN deficiency significantly reduces diffuse Aß plaque growth in these APP/PS1 mice. This protective effect is due, at least in part, to enhanced microglial Aß phagocytosis caused by PGRN deficiency-induced expression of TYROBP network genes (TNG) including an AD risk factor Trem2. PGRN-deficient APP/PS1 mice also exhibit less severe axonal dystrophy and partially improved behavior phenotypes. While PGRN deficiency reduces these amyloidosis-related phenotypes, other neuronal injury mechanisms are increased by loss of PGRN, revealing a multidimensional interaction of GRN with AD. For example, C1q complement deposition at synapses is enhanced in APP/PS1 mice lacking PGRN. Moreover, PGRN deficiency increases tau AT8 and AT180 pathologies in human P301L tau-expressing mice. These human and rodent data suggest that global PGRN reduction induces microglial TNG expression and increases AD risk by exacerbating neuronal injury and tau pathology, rather than by accelerating Aß pathology.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Amiloidose/metabolismo , Animais , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/patologia , Granulinas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Camundongos , Camundongos Transgênicos , Microglia/patologia , Placa Amiloide/patologia , Progranulinas
7.
Brain ; 139(Pt 2): 526-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26667279

RESUMO

Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-ß oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-ß oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention.


Assuntos
Doença de Alzheimer/metabolismo , Líquido Intracelular/metabolismo , Príons/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Proteínas Priônicas , Príons/genética , Ligação Proteica/fisiologia , Receptor de Glutamato Metabotrópico 5/genética
8.
J Biol Chem ; 290(28): 17415-38, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26018073

RESUMO

Alzheimer disease (AD) is characterized by amyloid-ß accumulation, with soluble oligomers (Aßo) being the most synaptotoxic. However, the multivalent and unstable nature of Aßo limits molecular characterization and hinders research reproducibility. Here, we characterized multiple Aßo forms throughout the life span of various AD mice and in post-mortem human brain. Aßo exists in several populations, where prion protein (PrP(C))-interacting Aßo is a high molecular weight Aß assembly present in multiple mice and humans with AD. Levels of PrP(C)-interacting Aßo match closely with mouse memory and are equal or superior to other Aß measures in predicting behavioral impairment. However, Aßo metrics vary considerably between mouse strains. Deleting PrP(C) expression in mice with relatively low PrP(C)-interacting Aßo (Tg2576) results in partial rescue of cognitive performance as opposed to complete recovery in animals with a high percentage of PrP(C)-interacting Aßo (APP/PSEN1). These findings highlight the relative contributions and interplay of Aßo forms in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/metabolismo , Príons/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/etiologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Pessoa de Meia-Idade , Peso Molecular , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Córtex Pré-Frontal/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Príons/química , Príons/genética , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Ann Neurol ; 77(6): 953-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25707991

RESUMO

OBJECTIVE: Currently no effective disease-modifying agents exist for the treatment of Alzheimer disease (AD). The Fyn tyrosine kinase is implicated in AD pathology triggered by amyloid-ß oligomers (Aßo) and propagated by Tau. Thus, Fyn inhibition may prevent or delay disease progression. Here, we sought to repurpose the Src family kinase inhibitor oncology compound, AZD0530, for AD. METHODS: The pharmacokinetics and distribution of AZD0530 were evaluated in mice. Inhibition of Aßo signaling to Fyn, Pyk2, and Glu receptors by AZD0530 was tested by brain slice assays. After AZD0530 or vehicle treatment of wild-type and AD transgenic mice, memory was assessed by Morris water maze and novel object recognition. For these cohorts, amyloid precursor protein (APP) metabolism, synaptic markers (SV2 and PSD-95), and targets of Fyn (Pyk2 and Tau) were studied by immunohistochemistry and by immunoblotting. RESULTS: AZD0530 potently inhibits Fyn and prevents both Aßo-induced Fyn signaling and downstream phosphorylation of the AD risk gene product Pyk2, and of NR2B Glu receptors in brain slices. After 4 weeks of treatment, AZD0530 dosing of APP/PS1 transgenic mice fully rescues spatial memory deficits and synaptic depletion, without altering APP or Aß metabolism. AZD0530 treatment also reduces microglial activation in APP/PS1 mice, and rescues Tau phosphorylation and deposition abnormalities in APP/PS1/Tau transgenic mice. There is no evidence of AZD0530 chronic toxicity. INTERPRETATION: Targeting Fyn can reverse memory deficits found in AD mouse models, and rescue synapse density loss characteristic of the disease. Thus, AZD0530 is a promising candidate to test as a potential therapy for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Benzodioxóis/farmacocinética , Modelos Animais de Doenças , Quinase 2 de Adesão Focal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores de Proteínas Quinases/farmacocinética , Quinazolinas/farmacocinética
10.
J Biol Chem ; 289(41): 28460-77, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25148681

RESUMO

Soluble Amyloid-ß oligomers (Aßo) can trigger Alzheimer disease (AD) pathophysiology by binding to cell surface cellular prion protein (PrP(C)). PrP(C) interacts physically with metabotropic glutamate receptor 5 (mGluR5), and this interaction controls the transmission of neurotoxic signals to intracellular substrates. Because the interruption of the signal transduction from PrP(C) to mGluR5 has therapeutic potential for AD, we developed assays to explore the effect of endogenous ligands, agonists/antagonists, and antibodies on the interaction between PrP(C) and mGluR5 in cell lines and mouse brain. We show that the PrP(C) segment of amino acids 91-153 mediates the interaction with mGluR5. Agonists of mGluR5 increase the mGluR5-PrP(C) interaction, whereas mGluR5 antagonists suppress protein association. Synthetic Aßo promotes the protein interaction in mouse brain and transfected HEK-293 cell membrane preparations. The interaction of PrP(C) and mGluR5 is enhanced dramatically in the brains of familial AD transgenic model mice. In brain homogenates with Aßo, the interaction of PrP(C) and mGluR5 is reversed by mGluR5-directed antagonists or antibodies directed against the PrP(C) segment of amino acids 91-153. Silent allosteric modulators of mGluR5 do not alter Glu or basal mGluR5 activity, but they disrupt the Aßo-induced interaction of mGluR5 with PrP(C). The assays described here have the potential to identify and develop new compounds that inhibit the interaction of PrP(C) and mGluR5, which plays a pivotal role in the pathogenesis of Alzheimer disease by transmitting the signal from extracellular Aßo into the cytosol.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Anticorpos/farmacologia , Proteínas PrPC/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação , Bioensaio , Química Encefálica , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ligantes , Camundongos , Camundongos Transgênicos , Mapeamento de Peptídeos , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
11.
Opt Express ; 22(7): 8720-5, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718241

RESUMO

We demonstrate theoretically a large transverse magneto-optical Kerr effect (TMOKE) in subwavelength gratings consisting of alternating magneto-insulating and nonmagnetic dielectric nanostripes. The reflectivity of the grating reaches 96% at the frequencies corresponding to the maximum of the TMOKE response. The combination of a large TMOKE response and high reflectivity is important for applications in 3D imaging, magneto-optical data storage, and magnonics.

12.
Nanomaterials (Basel) ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202474

RESUMO

We demonstrated resonance-based detection of magnetic nanoparticles employing novel designs based upon planar (on-chip) microresonators that may serve as alternatives to conventional magnetoresistive magnetic nanoparticle detectors. We detected 130 nm sized magnetic nanoparticle clusters immobilized on sensor surfaces after flowing through PDMS microfluidic channels molded using a 3D printed mold. Two detection schemes were investigated: (i) indirect detection incorporating ferromagnetic antidot nanostructures within microresonators, and (ii) direct detection of nanoparticles without an antidot lattice. Using scheme (i), magnetic nanoparticles noticeably downshifted the resonance fields of an antidot nanostructure by up to 207 G. In a similar antidot device in which nanoparticles were introduced via droplets rather than a microfluidic channel, the largest shift was only 44 G with a sensitivity of 7.57 G/ng. This indicated that introduction of the nanoparticles via microfluidics results in stronger responses from the ferromagnetic resonances. The results for both devices demonstrated that ferromagnetic antidot nanostructures incorporated within planar microresonators can detect nanoparticles captured from dispersions. Using detection scheme (ii), without the antidot array, we observed a strong resonance within the nanoparticles. The resonance's strength suggests that direct detection is more sensitive to magnetic nanoparticles than indirect detection using a nanostructure, in addition to being much simpler.

13.
Phys Rev Lett ; 104(20): 207205, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20867058

RESUMO

Spin-wave excitations (magnons) are investigated in a one-dimensional (1D) magnonic crystal fabricated out of Ni80Fe20 nanowires. We find two different magnon band structures depending on the magnetic ordering of neighboring wires, i.e., parallel and antiparallel alignment. At a zero in-plane magnetic field H the modes of the antiparallel case are close to those obtained by zone folding of the spin-wave dispersions of the parallel case. This is no longer true for nonzero H which opens a forbidden frequency gap at the Brillouin zone boundary. The 1D stop band gap scales with the external field, which generates a periodic potential for Bragg reflection of the magnons.

14.
ACS Appl Mater Interfaces ; 11(38): 35420-35428, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31448588

RESUMO

Heterostructures exhibiting perpendicular magnetic anisotropy (PMA) have traditionally served the magnetic recording industry. However, an opportunity exists to expand the applications of PMA heterostructures into the realm of hydrogen sensing using ferromagnetic resonance (FMR) by exploiting the hydrogen-induced modifications to PMA that occur at the interface between Pd and a ferromagnet. Here, we present the first in operando depth-resolved study of the in-plane interfacial magnetization of a Co/Pd film which features tailorable PMA in the presence of hydrogen gas. We combine polarized neutron reflectometry with in situ FMR to explore how the absorption of hydrogen at the Co/Pd interface affects the heterostructures spin-resonance condition during hydrogen cycling. Experimental data and modeling reveal that the Pd layer expands when exposed to hydrogen gas, while the in-plane magnetic moment of the Co/Pd film increases as the interfacial PMA is reduced to affect the FMR frequency. This work highlights a potential route for magnetic hydrogen gas sensing.

15.
Cell Rep ; 26(1): 145-158.e8, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605671

RESUMO

Cellular prion protein (PrPC) binds the scrapie conformation of PrP (PrPSc) and oligomeric ß-amyloid peptide (Aßo) to mediate transmissible spongiform encephalopathy (TSE) and Alzheimer's disease (AD), respectively. We conducted cellular and biochemical screens for compounds blocking PrPC interaction with Aßo. A polymeric degradant of an antibiotic targets Aßo binding sites on PrPC with low nanomolar affinity and prevents Aßo-induced pathophysiology. We then identified a range of negatively charged polymers with specific PrPC affinity in the low to sub-nanomolar range, from both biological (melanin) and synthetic (poly [4-styrenesulfonic acid-co-maleic acid], PSCMA) origin. Association of PSCMA with PrPC prevents Aßo/PrPC-hydrogel formation, blocks Aßo binding to neurons, and abrogates PrPSc production by ScN2a cells. We show that oral PSCMA yields effective brain concentrations and rescues APPswe/PS1ΔE9 transgenic mice from AD-related synapse loss and memory deficits. Thus, an orally active PrPC-directed polymeric agent provides a potential therapeutic approach to address neurodegeneration in AD and TSE.


Assuntos
Doença de Alzheimer/fisiopatologia , Proteínas Priônicas/antagonistas & inibidores , Animais , Camundongos , Camundongos Transgênicos , Transdução de Sinais
16.
Sci Rep ; 7: 41157, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145463

RESUMO

Programmability of stable magnetization configurations in a magnetic device is a highly desirable feature for a variety of applications, such as in magneto-transport and spin-wave logic. Periodic systems such as antidot lattices may exhibit programmability; however, to achieve multiple stable magnetization configurations the lattice geometry must be optimized. We consider the magnetization states in Co-antidot lattices of ≈50 nm thickness and ≈150 nm inter-antidot distance. Micromagnetic simulations were applied to investigate the magnetization states around individual antidots during the reversal process. The reversal processes predicted by micromagnetics were confirmed by experimental observations. Magnetization reversal in these antidots occurs via field driven transition between 3 elementary magnetization states - termed G, C and Q. These magnetization states can be described by vectors, and the reversal process proceeds via step-wise linear operations on these vector states. Rules governing the co-existence of the three magnetization states were empirically observed. It is shown that in an n × n antidot lattice, a variety of field switchable combinations of G, C and Q can occur, indicating programmability of the antidot lattices.

17.
Alzheimers Res Ther ; 7(1): 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945128

RESUMO

INTRODUCTION: Recent studies have shown that several strains of transgenic Alzheimer's disease (AD) mice overexpressing the amyloid precursor protein (APP) have cortical hyperexcitability, and their results have suggested that this aberrant network activity may be a mechanism by which amyloid-ß (Aß) causes more widespread neuronal dysfunction. Specific anticonvulsant therapy reverses memory impairments in various transgenic mouse strains, but it is not known whether reduction of epileptiform activity might serve as a surrogate marker of drug efficacy for memory improvement in AD mouse models. METHODS: Transgenic AD mice (APP/PS1 and 3xTg-AD) were chronically implanted with dural electroencephalography electrodes, and epileptiform activity was correlated with spatial memory function and transgene-specific pathology. The antiepileptic drugs ethosuximide and brivaracetam were tested for their ability to suppress epileptiform activity and to reverse memory impairments and synapse loss in APP/PS1 mice. RESULTS: We report that in two transgenic mouse models of AD (APP/PS1 and 3xTg-AD), the presence of spike-wave discharges (SWDs) correlated with impairments in spatial memory. Both ethosuximide and brivaracetam reduce mouse SWDs, but only brivaracetam reverses memory impairments in APP/PS1 mice. CONCLUSIONS: Our data confirm an intriguing therapeutic role of anticonvulsant drugs targeting synaptic vesicle protein 2A across AD mouse models. Chronic ethosuximide dosing did not reverse spatial memory impairments in APP/PS1 mice, despite reduction of SWDs. Our data indicate that SWDs are not a reliable surrogate marker of appropriate target engagement for reversal of memory dysfunction in APP/PS1 mice.

19.
Neuron ; 79(5): 887-902, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24012003

RESUMO

Soluble amyloid-ß oligomers (Aßo) trigger Alzheimer's disease (AD) pathophysiology and bind with high affinity to cellular prion protein (PrP(C)). At the postsynaptic density (PSD), extracellular Aßo bound to lipid-anchored PrP(C) activates intracellular Fyn kinase to disrupt synapses. Here, we screened transmembrane PSD proteins heterologously for the ability to couple Aßo-PrP(C) with Fyn. Only coexpression of the metabotropic glutamate receptor, mGluR5, allowed PrP(C)-bound Aßo to activate Fyn. PrP(C) and mGluR5 interact physically, and cytoplasmic Fyn forms a complex with mGluR5. Aßo-PrP(C) generates mGluR5-mediated increases of intracellular calcium in Xenopus oocytes and in neurons, and the latter is also driven by human AD brain extracts. In addition, signaling by Aßo-PrP(C)-mGluR5 complexes mediates eEF2 phosphorylation and dendritic spine loss. For mice expressing familial AD transgenes, mGluR5 antagonism reverses deficits in learning, memory, and synapse density. Thus, Aßo-PrP(C) complexes at the neuronal surface activate mGluR5 to disrupt neuronal function.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Proteínas PrPC/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , Transdução de Sinais/fisiologia , Doença de Alzheimer/fisiopatologia , Animais , Cálcio/metabolismo , Células Cultivadas , Quinase do Fator 2 de Elongação/metabolismo , Células HEK293 , Humanos , Camundongos , Oócitos , Fosforilação , Densidade Pós-Sináptica/metabolismo , Receptor de Glutamato Metabotrópico 5 , Xenopus
20.
Nat Neurosci ; 15(9): 1227-35, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22820466

RESUMO

Amyloid-beta (Aß) oligomers are thought to trigger Alzheimer's disease pathophysiology. Cellular prion protein (PrP(C)) selectively binds oligomeric Aß and can mediate Alzheimer's disease-related phenotypes. We examined the specificity, distribution and signaling of Aß-PrP(C) complexes, seeking to understand how they might alter the function of NMDA receptors (NMDARs) in neurons. PrP(C) is enriched in postsynaptic densities, and Aß-PrP(C) interaction leads to Fyn kinase activation. Soluble Aß assemblies derived from the brains of individuals with Alzheimer's disease interacted with PrP(C) to activate Fyn. Aß engagement of PrP(C)-Fyn signaling yielded phosphorylation of the NR2B subunit of NMDARs, which was coupled to an initial increase and then a loss of surface NMDARs. Aß-induced dendritic spine loss and lactate dehydrogenase release required both PrP(C) and Fyn, and human familial Alzheimer's disease transgene-induced convulsive seizures did not occur in mice lacking PrP(C). These results delineate an Aß oligomer signal transduction pathway that requires PrP(C) and Fyn to alter synaptic function, with deleterious consequences in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Neurônios/fisiologia , Proteínas PrPC/metabolismo , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Sinapses/fisiologia , Doença de Alzheimer/fisiopatologia , Animais , Western Blotting , Sinalização do Cálcio/fisiologia , Linhagem Celular , Espinhas Dendríticas/metabolismo , Eletroencefalografia , Ativação Enzimática , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Proteínas PrPC/genética , Ligação Proteica , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Convulsões/genética , Convulsões/prevenção & controle , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA