RESUMO
BACKGROUND: Multiple digital data sources can capture moment-to-moment information to advance a robust understanding of opioid use disorder (OUD) behavior, ultimately creating a digital phenotype for each patient. This information can lead to individualized interventions to improve treatment for OUD. OBJECTIVE: The aim is to examine patient engagement with multiple digital phenotyping methods among patients receiving buprenorphine medication for OUD. METHODS: The study enrolled 65 patients receiving buprenorphine for OUD between June 2020 and January 2021 from 4 addiction medicine programs in an integrated health care delivery system in Northern California. Ecological momentary assessment (EMA), sensor data, and social media data were collected by smartphone, smartwatch, and social media platforms over a 12-week period. Primary engagement outcomes were meeting measures of minimum phone carry (≥8 hours per day) and watch wear (≥18 hours per day) criteria, EMA response rates, social media consent rate, and data sparsity. Descriptive analyses, bivariate, and trend tests were performed. RESULTS: The participants' average age was 37 years, 47% of them were female, and 71% of them were White. On average, participants met phone carrying criteria on 94% of study days, met watch wearing criteria on 74% of days, and wore the watch to sleep on 77% of days. The mean EMA response rate was 70%, declining from 83% to 56% from week 1 to week 12. Among participants with social media accounts, 88% of them consented to providing data; of them, 55% of Facebook, 54% of Instagram, and 57% of Twitter participants provided data. The amount of social media data available varied widely across participants. No differences by age, sex, race, or ethnicity were observed for any outcomes. CONCLUSIONS: To our knowledge, this is the first study to capture these 3 digital data sources in this clinical population. Our findings demonstrate that patients receiving buprenorphine treatment for OUD had generally high engagement with multiple digital phenotyping data sources, but this was more limited for the social media data. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.3389/fpsyt.2022.871916.
Assuntos
Buprenorfina , Transtornos Relacionados ao Uso de Opioides , Feminino , Humanos , Masculino , Participação do Paciente , Buprenorfina/uso terapêutico , Avaliação Momentânea Ecológica , Etnicidade , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológicoRESUMO
BACKGROUND: Older adults with obesity residing in rural areas have reduced access to weight management programs. We determined the feasibility, acceptability and preliminary outcomes of an integrated technology-based health promotion intervention in rural-living, older adults using remote monitoring and synchronous video-based technology. METHODS: A 6-month, non-randomized, non-blinded, single-arm study was conducted from October 2018 to May 2020 at a community-based aging center of adults aged ≥65 years with a body mass index (BMI) ≥30 kg/m2. Weekly dietitian visits focusing on behavior therapy and caloric restriction and twice-weekly physical therapist-led group strength, flexibility and balance training classes were delivered using video-conferencing to participants in their homes. Participants used a Fitbit Alta HR for remote monitoring with data feedback provided by the interventionists. An aerobic activity prescription was provided and monitored. RESULTS: Mean age was 72.9±3.9 years (82% female). Baseline anthropometric measures of weight, BMI, and waist circumference were 97.8±16.3 kg, 36.5±5.2 kg/m2, and 115.5±13.0 cm, respectively. A total of 142 participants were screened (n=27 ineligible), and 53 consented. There were nine dropouts (17%). Overall satisfaction with the trial (4.7+ 0.6, scale: 1 (low) to 5 (high)) and with Fitbit (4.2+ 0.9) were high. Fitbit was worn an average of 81.7±19.3% of intervention days. In completers, mean weight loss was 4.6±3.5 kg or 4.7±3.5% (p< 0.001). Physical function measures of 30-s sit-to-stand repetitions increased from 13.5±5.7 to 16.7±5.9 (p< 0.001), 6-min walk improved by 42.0±77.3 m (p=0.005) but no differences were observed in gait speed or grip strength. Subjective measures of late-life function improved (3.4±4.7 points, p< 0.001). CONCLUSIONS: A technology-based obesity intervention is feasible and acceptable to older adults with obesity and may lead to weight loss and improved physical function. CLINICAL TRIAL REGISTRATION: Registered on Clinicaltrials.gov # NCT03104205 . Registered on April 7, 2017. First participant enrolled on October 1st, 2018.
Assuntos
Obesidade , Redução de Peso , Idoso , Índice de Massa Corporal , Estudos de Viabilidade , Feminino , Humanos , Masculino , Obesidade/diagnóstico , Obesidade/epidemiologia , Obesidade/terapia , TecnologiaRESUMO
BACKGROUND: The Assistant to Lift your Level of activitY (Ally) app is a smartphone application that combines financial incentives with chatbot-guided interventions to encourage users to reach personalized daily step goals. PURPOSE: To evaluate the effects of incentives, weekly planning, and daily self-monitoring prompts that were used as intervention components as part of the Ally app. METHODS: We conducted an 8 week optimization trial with n = 274 insurees of a health insurance company in Switzerland. At baseline, participants were randomized to different incentive conditions (cash incentives vs. charity incentives vs. no incentives). Over the course of the study, participants were randomized weekly to different planning conditions (action planning vs. coping planning vs. no planning) and daily to receiving or not receiving a self-monitoring prompt. Primary outcome was the achievement of personalized daily step goals. RESULTS: Study participants were more active and healthier than the general Swiss population. Daily cash incentives increased step-goal achievement by 8.1%, 95% confidence interval (CI): [2.1, 14.1] and, only in the no-incentive control group, action planning increased step-goal achievement by 5.8%, 95% CI: [1.2, 10.4]. Charity incentives, self-monitoring prompts, and coping planning did not affect physical activity. Engagement with planning interventions and self-monitoring prompts was low and 30% of participants stopped using the app over the course of the study. CONCLUSIONS: Daily cash incentives increased physical activity in the short term. Planning interventions and self-monitoring prompts require revision before they can be included in future versions of the app. Selection effects and engagement can be important challenges for physical-activity apps. CLINICAL TRIAL INFORMATION: This study was registered on ClinicalTrials.gov, NCT03384550.
Assuntos
Exercício Físico , Objetivos , Aplicativos Móveis , Motivação , Telemedicina/métodos , Caminhada , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Participação do Paciente , Distribuição Aleatória , Sistemas de Alerta , Smartphone , Design de Software , Suíça/epidemiologiaRESUMO
Older adults with obesity are at a high risk of decline, particularly in rural areas. Our study objective was to gain insights into how a potential Mobile Health Obesity Wellness Intervention (MOWI) in rural older adults with obesity, consisting of nutrition and exercise sessions, could be helpful to improve physical function. A qualitative methods study was conducted in a rural community, community-based aging center. Four community leaders, 7 clinicians and 29 patient participants underwent focus groups and semi-structured interviews. All participants had a favorable view of MOWI and saw its potential to improve health and create accountability. Participants noted that MOWI could overcome geographic barriers and provided feedback about components that could improve implementation. There was expressed enthusiasm over its potential to improve health. The use of technology in older adults with obesity in rural areas has considerable promise. There is potential that this intervention could potentially extend to distant areas in rural America that can surmount accessibility barriers. If successful, this intervention could potentially alter healthcare delivery by enhancing health promotion in a remote, geographically constrained communities. MOWI has the potential to reach older adults with obesity using novel methods in geographically isolated regions.
Assuntos
Promoção da Saúde/métodos , Obesidade , População Rural , Telemedicina/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/prevenção & controle , Obesidade/terapiaRESUMO
BACKGROUND: Asthma is one of the most prevalent chronic respiratory diseases. Despite increased investment in treatment, little progress has been made in the early recognition and treatment of asthma exacerbations over the last decade. Nocturnal cough monitoring may provide an opportunity to identify patients at risk for imminent exacerbations. Recently developed approaches enable smartphone-based cough monitoring. These approaches, however, have not undergone longitudinal overnight testing nor have they been specifically evaluated in the context of asthma. Also, the problem of distinguishing partner coughs from patient coughs when two or more people are sleeping in the same room using contact-free audio recordings remains unsolved. OBJECTIVE: The objective of this study was to evaluate the automatic recognition and segmentation of nocturnal asthmatic coughs and cough epochs in smartphone-based audio recordings that were collected in the field. We also aimed to distinguish partner coughs from patient coughs in contact-free audio recordings by classifying coughs based on sex. METHODS: We used a convolutional neural network model that we had developed in previous work for automated cough recognition. We further used techniques (such as ensemble learning, minibatch balancing, and thresholding) to address the imbalance in the data set. We evaluated the classifier in a classification task and a segmentation task. The cough-recognition classifier served as the basis for the cough-segmentation classifier from continuous audio recordings. We compared automated cough and cough-epoch counts to human-annotated cough and cough-epoch counts. We employed Gaussian mixture models to build a classifier for cough and cough-epoch signals based on sex. RESULTS: We recorded audio data from 94 adults with asthma (overall: mean 43 years; SD 16 years; female: 54/94, 57%; male 40/94, 43%). Audio data were recorded by each participant in their everyday environment using a smartphone placed next to their bed; recordings were made over a period of 28 nights. Out of 704,697 sounds, we identified 30,304 sounds as coughs. A total of 26,166 coughs occurred without a 2-second pause between coughs, yielding 8238 cough epochs. The ensemble classifier performed well with a Matthews correlation coefficient of 92% in a pure classification task and achieved comparable cough counts to that of human annotators in the segmentation of coughing. The count difference between automated and human-annotated coughs was a mean -0.1 (95% CI -12.11, 11.91) coughs. The count difference between automated and human-annotated cough epochs was a mean 0.24 (95% CI -3.67, 4.15) cough epochs. The Gaussian mixture model cough epoch-based sex classification performed best yielding an accuracy of 83%. CONCLUSIONS: Our study showed longitudinal nocturnal cough and cough-epoch recognition from nightly recorded smartphone-based audio from adults with asthma. The model distinguishes partner cough from patient cough in contact-free recordings by identifying cough and cough-epoch signals that correspond to the sex of the patient. This research represents a step towards enabling passive and scalable cough monitoring for adults with asthma.
Assuntos
Asma/complicações , Tosse/psicologia , Smartphone/instrumentação , Adulto , Retroalimentação Sensorial , Feminino , Humanos , MasculinoRESUMO
Opportunistic sensing allows applications to "task" mobile devices to measure context in a target region. For example, one could leverage sensor-equipped vehicles to measure traffic or pollution levels on a particular street or users' mobile phones to locate (Bluetooth-enabled) objects in their vicinity. In most proposed applications, context reports include the time and location of the event, putting the privacy of users at increased risk: even if identifying information has been removed from a report, the accompanying time and location can reveal sufficient information to de-anonymize the user whose device sent the report. We propose and evaluate a novel spatiotemporal blurring mechanism based on tessellation and clustering to protect users' privacy against the system while reporting context. Our technique employs a notion of probabilistic k-anonymity; it allows users to perform local blurring of reports efficiently without an online anonymization server before the data are sent to the system. The proposed scheme can control the degree of certainty in location privacy and the quality of reports through a system parameter. We outline the architecture and security properties of our approach and evaluate our tessellation and clustering algorithm against real mobility traces.
RESUMO
Dartmouth College's Institute for Security, Technology, and Society conducted three workshops on securing information technology in healthcare, attended by a diverse range of experts in the field. This article summarizes the three workshops.
RESUMO
We present a novel gated recurrent neural network to detect when a person is chewing on food. We implemented the neural network as a custom analog integrated circuit in a 0.18 µm CMOS technology. The neural network was trained on 6.4 hours of data collected from a contact microphone that was mounted on volunteers' mastoid bones. When tested on 1.6 hours of previously-unseen data, the analog neural network identified chewing events at a 24-second time resolution. It achieved a recall of 91% and an F1-score of 94% while consuming 1.1 µW of power. A system for detecting whole eating episodes-like meals and snacks-that is based on the novel analog neural network consumes an estimated 18.8 µW of power.
Assuntos
Mastigação , Redes Neurais de Computação , HumanosRESUMO
BACKGROUND: Older adults who engage in physical activity can reduce their risk of mobility impairment and disability. Short amounts of walking can improve quality of life, physical function, and cardiovascular health. Various programs have been implemented to encourage older adults to engage in physical activity, but sustaining their motivation continues to be a challenge. Ubiquitous devices, such as mobile phones and smartwatches, coupled with machine-learning algorithms, can potentially encourage older adults to be more physically active. Current algorithms that are deployed in consumer devices (eg, Fitbit) are proprietary, often are not tailored to the movements of older adults, and have been shown to be inaccurate in clinical settings. Step-counting algorithms have been developed for smartwatches, but only using data from younger adults and, often, were only validated in controlled laboratory settings. OBJECTIVE: We sought to develop and validate a smartwatch step-counting app for older adults and evaluate the algorithm in free-living settings over a long period of time. METHODS: We developed and evaluated a step-counting app for older adults on an open-source wrist-worn device (Amulet). The app includes algorithms to infer the level of physical activity and to count steps. We validated the step-counting algorithm in the lab (counting steps from a video recording, n=20) and in free-living conditions-one 2-day field study (n=6) and two 12-week field studies (using the Fitbit as ground truth, n=16). During app system development, we evaluated 4 walking patterns: normal, fast, up and down a staircase, and intermittent speed. For the field studies, we evaluated 5 different cut-off values for the algorithm, using correlation and error rate as the evaluation metrics. RESULTS: The step-counting algorithm performed well. In the lab study, for normal walking (R2=0.5), there was a stronger correlation between the Amulet steps and the video-validated steps; for all activities, the Amulet's count was on average 3.2 (2.1%) steps lower (SD 25.9) than the video-validated count. For the 2-day field study, the best parameter settings led to an association between Amulet and Fitbit (R2=0.989) and 3.1% (SD 25.1) steps lower than Fitbit, respectively. For the 12-week field study, the best parameter setting led to an R2 value of 0.669. CONCLUSIONS: Our findings demonstrate the importance of an iterative process in algorithm development before field-based deployment. This work highlights various challenges and insights involved in developing and validating monitoring systems in real-world settings. Nonetheless, our step-counting app for older adults had good performance relative to the ground truth (a commercial Fitbit step counter). Our app could potentially be used to help improve physical activity among older adults.
RESUMO
Early detection of cognitive decline involved in Alzheimer's Disease and Related Dementias (ADRD) in older adults living alone is essential for developing, planning, and initiating interventions and support systems to improve users' everyday function and quality of life. In this paper, we explore the voice commands using a Voice-Assistant System (VAS), i.e., Amazon Alexa, from 40 older adults who were either Healthy Control (HC) participants or Mild Cognitive Impairment (MCI) participants, age 65 or older. We evaluated the data collected from voice commands, cognitive assessments, and interviews and surveys using a structured protocol. We extracted 163 unique command-relevant features from each participant's use of the VAS. We then built machine-learning models including 1-layer/2-layer neural networks, support vector machines, decision tree, and random forest, for classification and comparison with standard cognitive assessment scores, e.g., Montreal Cognitive Assessment (MoCA). Our classification models using fusion features achieved an accuracy of 68%, and our regression model resulted in a Root-Mean-Square Error (RMSE) score of 3.53. Our Decision Tree (DT) and Random Forest (RF) models using selected features achieved higher classification accuracy 80-90%. Finally, we analyzed the contribution of each feature set to the model output, thus revealing the commands and features most useful in inferring the participants' cognitive status. We found that features of overall performance, features of music-related commands, features of call-related commands, and features from Automatic Speech Recognition (ASR) were the top-four feature sets most impactful on inference accuracy. The results from this controlled study demonstrate the promise of future home-based cognitive assessments using Voice-Assistant Systems.
RESUMO
INTRODUCTION: Effective weight-management interventions require frequent interactions with specialised multidisciplinary teams of medical, nutritional and behavioural experts to enact behavioural change. However, barriers that exist in rural areas, such as transportation and a lack of specialised services, can prevent patients from receiving quality care. METHODS: We recruited patients from the Dartmouth-Hitchcock Weight & Wellness Center into a single-arm, non-randomised study of a remotely delivered 16-week evidence-based healthy lifestyle programme. Every 4 weeks, participants completed surveys that included their willingness to pay for services like those experienced in the intervention. A two-item Willingness-to-Pay survey was administered to participants asking about their willingness to trade their face-to-face visits for videoconference visits based on commute and copay. RESULTS: Overall, those with a travel duration of 31-45 min had a greater willingness to trade in-person visits for telehealth than any other group. Participants who had a travel duration less than 15 min, 16-30 min and 46-60 min experienced a positive trend in willingness to have telehealth visits until Week 8, where there was a general negative trend in willingness to trade in-person visits for virtual. Participants believed that telemedicine was useful and helpful. CONCLUSIONS: In rural areas where patients travel 30-45 min a telemedicine-delivered, intensive weight-loss intervention may be a well-received and cost-effective way for both patients and the clinical care team to connect.
Assuntos
Telemedicina , Análise Custo-Benefício , Estilo de Vida Saudável , Humanos , Comunicação por Videoconferência , Redução de PesoRESUMO
Introduction: Across the U.S., the prevalence of opioid use disorder (OUD) and the rates of opioid overdoses have risen precipitously in recent years. Several effective medications for OUD (MOUD) exist and have been shown to be life-saving. A large volume of research has identified a confluence of factors that predict attrition and continued substance use during substance use disorder treatment. However, much of this literature has examined a small set of potential moderators or mediators of outcomes in MOUD treatment and may lead to over-simplified accounts of treatment non-adherence. Digital health methodologies offer great promise for capturing intensive, longitudinal ecologically-valid data from individuals in MOUD treatment to extend our understanding of factors that impact treatment engagement and outcomes. Methods: This paper describes the protocol (including the study design and methodological considerations) from a novel study supported by the National Drug Abuse Treatment Clinical Trials Network at the National Institute on Drug Abuse (NIDA). This study (D-TECT) primarily seeks to evaluate the feasibility of collecting ecological momentary assessment (EMA), smartphone and smartwatch sensor data, and social media data among patients in outpatient MOUD treatment. It secondarily seeks to examine the utility of EMA, digital sensing, and social media data (separately and compared to one another) in predicting MOUD treatment retention, opioid use events, and medication adherence [as captured in electronic health records (EHR) and EMA data]. To our knowledge, this is the first project to include all three sources of digitally derived data (EMA, digital sensing, and social media) in understanding the clinical trajectories of patients in MOUD treatment. These multiple data streams will allow us to understand the relative and combined utility of collecting digital data from these diverse data sources. The inclusion of EHR data allows us to focus on the utility of digital health data in predicting objectively measured clinical outcomes. Discussion: Results may be useful in elucidating novel relations between digital data sources and OUD treatment outcomes. It may also inform approaches to enhancing outcomes measurement in clinical trials by allowing for the assessment of dynamic interactions between individuals' daily lives and their MOUD treatment response. Clinical Trial Registration: Identifier: NCT04535583.
RESUMO
Recent developments of novel in-vehicle interventions show the potential to transform the otherwise routine and mundane task of commuting into opportunities to improve the drivers' health and well-being. Prior research has explored the effectiveness of various in-vehicle interventions and has identified moments in which drivers could be interruptible to interventions. All the previous studies, however, were conducted in either simulated or constrained real-world driving scenarios on a pre-determined route. In this paper, we take a step forward and evaluate when drivers interact with in-vehicle interventions in unconstrained free-living conditions. To this end, we conducted a two-month longitudinal study with 10 participants, in which each participant was provided with a study car for their daily driving needs. We delivered two in-vehicle interventions - each aimed at improving affective well-being - and simultaneously recorded the participants' driving behavior. In our analysis, we found that several pre-trip characteristics (like trip length, traffic flow, and vehicle occupancy) and the pre-trip affective state of the participants had significant associations with whether the participants started an intervention or canceled a started intervention. Next, we found that several in-the-moment driving characteristics (like current road type, past average speed, and future brake behavior) showed significant associations with drivers' responsiveness to the intervention. Further, we identified several driving behaviors that "negated" the effectiveness of interventions and highlight the potential of using such "negative" driving characteristics to better inform intervention delivery. Finally, we compared trips with and without intervention and found that both interventions employed in our study did not have a negative effect on driving behavior. Based on our analyses, we provide solid recommendations on how to deliver interventions to maximize responsiveness and effectiveness and minimize the burden on the drivers.
RESUMO
Just-In-Time Adaptive Intervention (JITAI) is an emerging technique with great potential to support health behavior by providing the right type and amount of support at the right time. A crucial aspect of JITAIs is properly timing the delivery of interventions, to ensure that a user is receptive and ready to process and use the support provided. Some prior works have explored the association of context and some user-specific traits on receptivity, and have built post-study machine-learning models to detect receptivity. For effective intervention delivery, however, a JITAI system needs to make in-the-moment decisions about a user's receptivity. To this end, we conducted a study in which we deployed machine-learning models to detect receptivity in the natural environment, i.e., in free-living conditions. We leveraged prior work regarding receptivity to JITAIs and deployed a chatbot-based digital coach - Ally - that provided physical-activity interventions and motivated participants to achieve their step goals. We extended the original Ally app to include two types of machine-learning model that used contextual information about a person to predict when a person is receptive: a static model that was built before the study started and remained constant for all participants and an adaptive model that continuously learned the receptivity of individual participants and updated itself as the study progressed. For comparison, we included a control model that sent intervention messages at random times. The app randomly selected a delivery model for each intervention message. We observed that the machine-learning models led up to a 40% improvement in receptivity as compared to the control model. Further, we evaluated the temporal dynamics of the different models and observed that receptivity to messages from the adaptive model increased over the course of the study.
RESUMO
BACKGROUND: Resistance-based exercises effectively enhance muscle strength, which is especially important in older populations as it reduces the risk of disability. Our group developed a Bluetooth-enabled handle for resistance exercise bands that wirelessly transmits relative force data through low-energy Bluetooth to a local smartphone or similar device. We present a usability assessment that evaluates an exercise system featuring a novel Bluetooth-enabled resistance exercise band, ultimately intended to expand the accessibility of resistance training through technology-enhanced home-based exercise programs for older adults. Although our target population is older adults, we assess the user experience among younger adults as a convenient and meaningful starting point in the testing and development of our device. METHODS: There were 32 young adults participating in three exercise sessions with the exercise band, after which each completed an adapted version of the Usefulness, Satisfaction, and Ease (USE) questionnaire to characterize the exercise system's strengths and weaknesses in usability. RESULTS: Questionnaire data reflected a positive and consistent user experience, with all 20 items receiving mean scores greater than 5.0 on a seven-point Likert scale. There were no specific areas of significant weakness in the device's user experience. CONCLUSIONS: The positive reception among young adults is a promising indication that the device can be successfully incorporated into exercise interventions and that the system can be further developed and tested for the target population of older adults.
RESUMO
BACKGROUND: Older persons with obesity aged 65+ residing in rural areas have reduced access to weight management programs due to geographic isolation. The ability to integrate technology into health promotion interventions shows a potential to reach this underserved population. METHODS: A 12-week pilot in 28 older rural adults with obesity (body mass index [BMI] ≥ 30 kg/m2) was conducted at a community aging center. The intervention consisted of individualized, weekly dietitian visits focusing on behavior therapy and caloric restriction with twice weekly physical therapist-led group strengthening training classes in a community-based aging center. All participants were provided a Fitbit Flex 2. An aerobic activity prescription outside the strength training classes was provided. RESULTS: Mean age was 72.9 ± 5.3 years (82% female). Baseline BMI was 37.1 kg/m2, and waist circumference was 120.0 ± 33.0 cm. Mean weight loss (pre/post) was 4.6 ± 3.2 kg (4.9 ± 3.4%; p < .001). Of the 40 eligible participants, 33 (75%) enrolled, and the completion rate was high (84.8%). Objective measures of physical function improved at follow-up: 6-minute walk test improved: 35.7 ± 41.2 m (p < .001); gait speed improved: 0.10 ± 0.24 m/s (p = .04); and five-times sit-to-stand improved by 2.1 seconds (p < .001). Subjective measures of late-life function improved (5.2 ± 7.1 points, p = .003), as did Patient-Reported Outcome Measurement Information Systems mental and physical health scores (5.0 ± 5.7 and 4.4 ± 5.0, both p < .001). Participants wore their Fitbit 93.9% of all intervention days, and were overall satisfied with the trial (4.5/5.0, 1-5 low-high) and with Fitbit (4.0/5.0). CONCLUSIONS: A multicomponent obesity intervention incorporating a wearable device is feasible and acceptable to older adults with obesity, and potentially holds promise in enhancing health.
Assuntos
Restrição Calórica , Exercício Físico , Obesidade/terapia , Dispositivos Eletrônicos Vestíveis , Redução de Peso , Idoso , Terapia Combinada , Estudos de Viabilidade , Feminino , Humanos , Masculino , Projetos Piloto , Saúde da População RuralRESUMO
Timely detection of an individual's stress level has the potential to improve stress management, thereby reducing the risk of adverse health consequences that may arise due to mismanagement of stress. Recent advances in wearable sensing have resulted in multiple approaches to detect and monitor stress with varying levels of accuracy. The most accurate methods, however, rely on clinical-grade sensors to measure physiological signals; they are often bulky, custom made, and expensive, hence limiting their adoption by researchers and the general public. In this article, we explore the viability of commercially available off-the-shelf sensors for stress monitoring. The idea is to be able to use cheap, nonclinical sensors to capture physiological signals and make inferences about the wearer's stress level based on that data. We describe a system involving a popular off-the-shelf heart rate monitor, the Polar H7; we evaluated our system with 26 participants in both a controlled lab setting with three well-validated stress-inducing stimuli and in free-living field conditions. Our analysis shows that using the off-the-shelf sensor alone, we were able to detect stressful events with an F1-score of up to 0.87 in the lab and 0.66 in the field, on par with clinical-grade sensors.
RESUMO
Recent advances in wearable sensor technologies have led to a variety of approaches for detecting physiological stress. Even with over a decade of research in the domain, there still exist many significant challenges, including a near-total lack of reproducibility across studies. Researchers often use some physiological sensors (custom-made or off-the-shelf), conduct a study to collect data, and build machine-learning models to detect stress. There is little effort to test the applicability of the model with similar physiological data collected from different devices, or the efficacy of the model on data collected from different studies, populations, or demographics. This paper takes the first step towards testing reproducibility and validity of methods and machine-learning models for stress detection. To this end, we analyzed data from 90 participants, from four independent controlled studies, using two different types of sensors, with different study protocols and research goals. We started by evaluating the performance of models built using data from one study and tested on data from other studies. Next, we evaluated new methods to improve the performance of stress-detection models and found that our methods led to a consistent increase in performance across all studies, irrespective of the device type, sensor type, or the type of stressor. Finally, we developed and evaluated a clustering approach to determine the stressed/not-stressed classification when applying models on data from different studies, and found that our approach performed better than selecting a threshold based on training data. This paper's thorough exploration of reproducibility in a controlled environment provides a critical foundation for deeper study of such methods, and is a prerequisite for tackling reproducibility in free-living conditions.
RESUMO
BACKGROUND: Sarcopenia, defined as the age-associated loss of muscle mass and strength, can be effectively mitigated through resistance-based physical activity. With compliance at approximately 40% for home-based exercise prescriptions, implementing a remote sensing system would help patients and clinicians to better understand treatment progress and increase compliance. The inclusion of end users in the development of mobile apps for remote-sensing systems can ensure that they are both user friendly and facilitate compliance. With advancements in natural language processing (NLP), there is potential for these methods to be used with data collected through the user-centered design process. OBJECTIVE: This study aims to develop a mobile app for a novel device through a user-centered design process with both older adults and clinicians while exploring whether data collected through this process can be used in NLP and sentiment analysis. METHODS: Through a user-centered design process, we conducted semistructured interviews during the development of a geriatric-friendly Bluetooth-connected resistance exercise band app. We interviewed patients and clinicians at weeks 0, 5, and 10 of the app development. Each semistructured interview consisted of heuristic evaluations, cognitive walkthroughs, and observations. We used the Bing sentiment library for a sentiment analysis of interview transcripts and then applied NLP-based latent Dirichlet allocation (LDA) topic modeling to identify differences and similarities in patient and clinician participant interviews. Sentiment was defined as the sum of positive and negative words (each word with a +1 or -1 value). To assess utility, we used quantitative assessment questionnaires-System Usability Scale (SUS) and Usefulness, Satisfaction, and Ease of use (USE). Finally, we used multivariate linear models-adjusting for age, sex, subject group (clinician vs patient), and development-to explore the association between sentiment analysis and SUS and USE outcomes. RESULTS: The mean age of the 22 participants was 68 (SD 14) years, and 17 (77%) were female. The overall mean SUS and USE scores were 66.4 (SD 13.6) and 41.3 (SD 15.2), respectively. Both patients and clinicians provided valuable insights into the needs of older adults when designing and building an app. The mean positive-negative sentiment per sentence was 0.19 (SD 0.21) and 0.47 (SD 0.21) for patient and clinician interviews, respectively. We found a positive association with positive sentiment in an interview and SUS score (ß=1.38; 95% CI 0.37 to 2.39; P=.01). There was no significant association between sentiment and the USE score. The LDA analysis found no overlap between patients and clinicians in the 8 identified topics. CONCLUSIONS: Involving patients and clinicians allowed us to design and build an app that is user friendly for older adults while supporting compliance. This is the first analysis using NLP and usability questionnaires in the quantification of user-centered design of technology for older adults.
Assuntos
Aplicativos Móveis , Processamento de Linguagem Natural , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e QuestionáriosRESUMO
PURPOSE: Few evidence-based strategies are specifically tailored for disparity populations such as rural adults. Two-way video-conferencing using telemedicine can potentially surmount geographic barriers that impede participation in high-intensity treatment programs offering frequent visits to clinic facilities. We aimed to understand barriers and facilitators of implementing a telemedicine-delivered tertiary-care, rural academic weight-loss program for the management of obesity. METHODS: A single-arm study of a 16-week, weight-loss pilot evaluated barriers and facilitators to program participation and exploratory measures of program adoption and staff confidence in implementation and intervention delivery. A program was delivered using video-conferencing within an existing clinical infrastructure. Elements of Consolidated Framework for Implementation Research (CFIR) provided a basis for assessing intervention characteristics, inner and outer settings, and individual characteristics using surveys and semi-structured interviews. We evaluated elements of the RE-AIM model (reach, adoption) to assess staff barriers to success for future scalability. FINDINGS: There were 27 patients and 8 staff completing measures. Using CFIR, the intervention was valuable from a patient participant standpoint; staff equally had positive feelings about using telemedicine as useful for patient care. The RE-AIM framework demonstrated limited reach but willingness to adopt was above average. A significant barrier limiting sustainability was physical space for intervention delivery and privacy and dedicated resources for staff. Scheduling stressors were also a challenge in its implementation. CONCLUSIONS: The need to engage staff, enhance organizational culture, and increase reach are major factors for rural health obesity clinics to enhance sustainability of using telemedicine for the management of obesity. TRIAL REGISTRATION: Clinicaltrials.gov NCT03309787. Registered on 16 October 2017.