Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(6): 100771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642805

RESUMO

Signaling networks are critical for virtually all cell functions. Our current knowledge of cell signaling has been summarized in signaling pathway databases, which, while useful, are highly biased toward well-studied processes, and do not capture context specific network wiring or pathway cross-talk. Mass spectrometry-based phosphoproteomics data can provide a more unbiased view of active cell signaling processes in a given context, however, it suffers from low signal-to-noise ratio and poor reproducibility across experiments. While progress in methods to extract active signaling signatures from such data has been made, there are still limitations with respect to balancing bias and interpretability. Here we present phuEGO, which combines up-to-three-layer network propagation with ego network decomposition to provide small networks comprising active functional signaling modules. PhuEGO boosts the signal-to-noise ratio from global phosphoproteomics datasets, enriches the resulting networks for functional phosphosites and allows the improved comparison and integration across datasets. We applied phuEGO to five phosphoproteomics data sets from cell lines collected upon infection with SARS CoV2. PhuEGO was better able to identify common active functions across datasets and to point to a subnetwork enriched for known COVID-19 targets. Overall, phuEGO provides a flexible tool to the community for the improved functional interpretation of global phosphoproteomics datasets.


Assuntos
Fosfoproteínas , Proteômica , Transdução de Sinais , Proteômica/métodos , Humanos , Fosfoproteínas/metabolismo , SARS-CoV-2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Software , Fosforilação , Espectrometria de Massas/métodos
2.
EMBO Rep ; 21(1): e48789, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31742873

RESUMO

The role of death receptor signaling for pathogen control and infection-associated pathogenesis is multifaceted and controversial. Here, we show that during viral infection, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) modulates NK cell activity independently of its pro-apoptotic function. In mice infected with lymphocytic choriomeningitis virus (LCMV), Trail deficiency led to improved specific CD8+ T-cell responses, resulting in faster pathogen clearance and reduced liver pathology. Depletion experiments indicated that this effect was mediated by NK cells. Mechanistically, TRAIL expressed by immune cells positively and dose-dependently modulates IL-15 signaling-induced granzyme B production in NK cells, leading to enhanced NK cell-mediated T cell killing. TRAIL also regulates the signaling downstream of IL-15 receptor in human NK cells. In addition, TRAIL restricts NK1.1-triggered IFNγ production by NK cells. Our study reveals a hitherto unappreciated immunoregulatory role of TRAIL signaling on NK cells for the granzyme B-dependent elimination of antiviral T cells.


Assuntos
Células Matadoras Naturais , Viroses , Animais , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/genética
3.
NAR Genom Bioinform ; 6(1): lqae014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486886

RESUMO

Protein homeostasis (a.k.a. proteostasis) is associated with the primary functions of life, and therefore with evolution. However, it is unclear how cellular proteostasis machines have evolved to adjust protein biogenesis needs to environmental constraints. Herein, we describe a novel computational approach, based on semantic network analysis, to evaluate proteostasis plasticity during evolution. We show that the molecular components of the proteostasis network (PN) are reliable metrics to deconvolute the life forms into Archaea, Bacteria and Eukarya and to assess the evolution rates among species. Semantic graphs were used as new criteria to evaluate PN complexity in 93 Eukarya, 250 Bacteria and 62 Archaea, thus representing a novel strategy for taxonomic classification, which provided information about species divergence. Kingdom-specific PN components were identified, suggesting that PN complexity may correlate with evolution. We found that the gains that occurred throughout PN evolution revealed a dichotomy within both the PN conserved modules and within kingdom-specific modules. Additionally, many of these components contribute to the evolutionary imprinting of other conserved mechanisms. Finally, the current study suggests a new way to exploit the genomic annotation of biomedical ontologies, deriving new knowledge from the semantic comparison of different biological systems.

4.
iScience ; 26(5): 106687, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216120

RESUMO

Inositol-requiring enzyme 1 (IRE1) is a major mediator of the unfolded protein response (UPR), which is activated upon endoplasmic reticulum (ER) stress. Tumor cells experience ER stress due to adverse microenvironmental cues, a stress overcome by relying on IRE1 signaling as an adaptive mechanism. Herein, we report the discovery of structurally new IRE1 inhibitors identified through the structural exploration of its kinase domain. Characterization in in vitro and in cellular models showed that they inhibit IRE1 signaling and sensitize glioblastoma (GB) cells to the standard chemotherapeutic, temozolomide (TMZ). Finally, we demonstrate that one of these inhibitors, Z4P, permeates the blood-brain barrier (BBB), inhibits GB growth, and prevents relapse in vivo when administered together with TMZ. The hit compound disclosed herein satisfies an unmet need for targeted, non-toxic IRE1 inhibitors and our results support the attractiveness of IRE1 as an adjuvant therapeutic target in GB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA