Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 108(17): 178301, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680912

RESUMO

Extending recent modeling efforts for emulsions, we propose a nonlocal fluidity relation for flowing granular materials, capturing several known finite-size effects observed in steady flow. We express the local Bagnold-type granular flow law in terms of a fluidity ratio and then extend it with a particular Laplacian term that is scaled by the grain size. The resulting model is calibrated against a sequence of existing discrete element method data sets for two-dimensional annular shear, where it is shown that the model correctly describes the divergence from a local rheology due to the grain size as well as the rate-independence phenomenon commonly observed in slowly flowing zones. The same law is then applied in two additional inhomogeneous flow geometries, and the predicted velocity profiles are compared against corresponding discrete element method simulations utilizing the same grain composition as before, yielding favorable agreement in each case.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(2 Pt 1): 021306, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19391738

RESUMO

Using discrete simulations, we investigate the behavior of a model granular material within an annular shear cell. Specifically, two-dimensional assemblies of disks are placed between two circular walls, the inner one rotating with prescribed angular velocity, while the outer one may expand or shrink and maintains a constant radial pressure. Focusing on steady state flows, we delineate in parameter space the range of applicability of the recently introduced constitutive laws for sheared granular materials (based on the inertial number). We discuss the two origins of the stronger strain rates observed near the inner boundary, the vicinity of the wall and the heteregeneous stress field in a Couette cell. Above a certain velocity, an inertial region develops near the inner wall, to which the known constitutive laws apply, with suitable corrections due to wall slip, for small enough stress gradients. Away from the inner wall, slow, apparently unbounded creep takes place in the nominally solid material, although its density and shear to normal stress ratio are on the jammed side of the critical values. In addition to rheological characterizations, our simulations provide microscopic information on the contact network and velocity fluctuations that is potentially useful to assess theoretical approaches.

3.
Materials (Basel) ; 9(12)2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28774149

RESUMO

The fracture behaviors of quasi-brittle materials are commonly specimen size (size effect) and crack size (boundary effect) dependent. In this study, a new failure model is developed for characterizing the size and boundary effects. The derivative of the energy release rate is firstly introduced to predict the nominal strength dominated by the strength mechanism. Combined with the energy criterion for the energy mechanism, an asymptotic model is developed to capture the effect of any crack size on the nominal strength, and its expression for geometrically similar specimens is also established, which is able to characterize the size effect. Detailed comparisons of the proposed model with the size effect law and the boundary effect model are performed, respectively. The nominal strength predictions based on the proposed model are validated with the experimental results of cracked three-point bending beam specimens made of concrete, of limestone and of hardened cement paste and compared with the model predictions given by the size effect law and the boundary effect model.

4.
Magn Reson Imaging ; 28(6): 910-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20332064

RESUMO

The rheology of granular materials near an interface is investigated through proton magnetic resonance imaging. A new cylinder shear apparatus has been inserted in the magnetic resonance imaging device, which allows the control of the radial confining pressure exerted by the outer wall on the grains and the measurement of the torque on the inner shearing cylinder. A multi-layer velocimetry sequence has been developed for the simultaneous measurement of velocity profiles in different sample zones, while the measurement of the solid fraction profile is based on static imaging of the sample. This study describes the influence of the roughness of the shearing interface and of the transverse confining walls on the granular interface rheology.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Reologia/métodos , Estresse Mecânico , Imageamento por Ressonância Magnética/métodos , Mostardeira , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA