Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 183, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622691

RESUMO

BACKGROUND: The use of cells as carriers for the delivery of nanoparticles is a promising approach in anticancer therapy, mainly due to their natural properties, such as biocompatibility and non-immunogenicity. Cellular carriers prevent the rapid degradation of nanoparticles, improve their distribution, reduce cytotoxicity and ensure selective delivery to the tumor microenvironment. Therefore, we propose the use of phagocytic cells as boron carbide nanoparticle carriers for boron delivery to the tumor microenvironment in boron neutron capture therapy. RESULTS: Macrophages originating from cell lines and bone marrow showed a greater ability to interact with boron carbide (B4C) than dendritic cells, especially the preparation containing larger nanoparticles (B4C 2). Consequently, B4C 2 caused greater toxicity and induced the secretion of pro-inflammatory cytokines by these cells. However, migration assays demonstrated that macrophages loaded with B4C 1 migrated more efficiently than with B4C 2. Therefore, smaller nanoparticles (B4C 1) with lower toxicity but similar ability to activate macrophages proved to be more attractive. CONCLUSIONS: Macrophages could be promising cellular carriers for boron carbide nanoparticle delivery, especially B4C 1 to the tumor microenvironment and thus prospective use in boron neutron capture therapy.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Boro , Linhagem Celular Tumoral , Nanopartículas/metabolismo , Macrófagos
2.
Materials (Basel) ; 17(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793502

RESUMO

In this research, we developed boron-rich nanoparticles that can be used for boron neutron capture therapy as potential carriers for boron delivery to cancerous tissues. Functionalized carbonated boron nitride nanostructures (CBNs) were successfully synthesized in self-propagating combustion waves in mixtures of high-nitrogen explosives and boron compounds. The products' composition, morphology, and structural features were investigated using Fourier transform infrared spectroscopy, powder X-ray diffraction, low-temperature nitrogen sorption analysis, thermogravimetric analysis, high-resolution scanning electron microscopy, and high-resolution transmission electron microscopy. The extreme conditions prevailing in combustion waves favor the formation of nanosized CBN hollow grains with highly disordered structures that are properly functionalized on the surface and inside the particles. Therefore, they are characterized by high porosity and good dispersibility in water, which are necessary for medical applications. During biological tests, a concentration-dependent effect of the obtained boron nitride preparations on the viability of normal and neoplastic cells was demonstrated. Moreover, the assessment of the degree of binding of fluorescently labeled nanoparticles to selected cells confirmed the relationships between the cell types and the concentration of the preparation at different incubation time points.

3.
Materials (Basel) ; 16(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834671

RESUMO

Boron carbide is one of the hardest materials in the world which can be synthesized by various methods. The most common one is a carbothermic or magnesiothermic reduction of B2O3 performed at high temperatures, where the obtained powder still requires grinding and purification. The goal of this research is to present the possibility of synthesizing B4C nanoparticles from elements via vapor deposition and modifying the morphology of the obtained powders, particularly those synthesized at high temperatures. B4C nanoparticles were synthesized in the process of direct synthesis from boron and carbon powders heated at the temperature of 1650 °C for 2 h under argon and characterized by using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray diffraction analysis, and dynamic light scattering measurements. The physicochemical characteristics of B4C nanoparticles were determined, including the diffusion coefficients, hydrodynamic diameter, electrophoretic mobilities, and zeta potentials. An evaluation of the obtained B4C nanoparticles was performed on several human and mouse cell lines, showing the relation between the cytotoxicity effect and the size of the synthesized nanoparticles. Assessing the suitability of the synthesized B4C for further modifications in terms of its applicability in boron neutron capture therapy was the overarching goal of this research.

4.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161003

RESUMO

The Pr3+-doped solid solutions from (Ba,Ca)(Ti,Zr)O3 (BCTZO) system were successfully synthesized using an efficient and low-energy consuming route-the Pechini method combined with the sintering at relatively low temperature (1450 °C). The obtained materials were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dielectric properties were systematically studied. The Pr3+-doped BCTZO diphasic material generates intense and broad red photoluminescence (PL) emission at room temperature. The optical properties were significantly improved with the Ti4+ substitution by Zr4+ ions. As a result, the Pr3+-doped (Ba,Ca)(Ti,Zr)O3 ceramics is a promising candidate for environmentally friendly, multifunctional material by combining good dielectric and photoluminescent properties with prognosis for the manifestation of strong photoluminescent and mechanoluminescent effects.

5.
Materials (Basel) ; 15(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500151

RESUMO

In this study, we investigated the effect of adding two different intermetallics, Ti5Si3 and TiSi2, for the preparation of TiB2-SiC-B4C composites. As part of the research, stoichiometric composites consisting only of two phases TiB2 and SiC were obtained. The TiB2-SiC-B4C composites were prepared via pressureless sintering. The presence of the phases in the sintered composites was confirmed using X-ray diffraction and scanning electron microscopy. The SEM-EDS examination revealed that the TiB2 and SiC phases were formed during the composite process synthesis and were distributed homogeneously in the B4C matrix. The obtained results allowed us to usually exceed 2000 °C and the use of specialized equipment for firing, that is, vacuum or protective atmosphere furnaces as well as control and measurement equipment. Such an approach generates high costs that are decisive for the economics of the technological processes. In the case of our compositions, it is possible to lower the temperature to 1650 °C. The TiB2-SiC-B4C composites were classified as UHTCs.

6.
Materials (Basel) ; 14(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203090

RESUMO

The powders of boron carbide are usually synthesized by the carbothermal reduction of boron oxide. As an alternative to high-temperature reactions, the development of the carbothermal reduction of organic precursors to produce B4C is receiving considerable interest. The aim of this work was to compare two methods of preparing different saccharide precursors mixed with boric acid with a molar ratio of boron to carbon of 1:9 for the synthesis of B4C. In the first method, aqueous solutions of saccharides and boric acid were dried overnight at 90 °C and pyrolyzed at 850 °C for 1 h under argon flow. In the second method, aqueous solutions of different saccharides and boric acid were freeze-dried and prepared in the same way as in the first method. Precursors from both methods were heat-treated at temperatures of 1300 to 1700 °C. The amount of boron carbide in the powders depends on the saccharides, the temperature of synthesis, and the method of precursor preparation.

7.
Materials (Basel) ; 14(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199341

RESUMO

The aim of the work was to study the interaction between boron-rich boron carbide nanoparticles and selected tumor and immune phagocytic cells. Experiments were performed to investigate the feasibility of the application of boron carbide nanoparticles as a boron carrier in boron neutron capture therapy. Boron carbide powder was prepared by the direct reaction between boron and soot using the transport of reagents through the gas phase. The powder was ground, and a population of nanoparticles with an average particle size about 80 nm was selected by centrifugation. The aqueous suspension of the nanoparticles was functionalized with human immunoglobulins or FITC-labeled human immunoglobulins and was then added to the MC38 murine colon carcinoma and to the RAW 264.7 cell line of mouse macrophages. Flow cytometry analysis was used to determine interactions between the functionalized boron carbide nanoparticles and respective cells. It was shown that B4C-IgG nanoconjugates may bind to phagocytic cells to be internalized by them, at least partially, whereas such nanoconjugates can only slightly interact with molecules on the cancer cells' surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA