Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Vet Pharmacol Ther ; 46(3): 185-194, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36448496

RESUMO

Monepantel (MNP), a novel anthelmintic drug from amino-acetonitrile derivatives, is a substrate for breast cancer resistance protein (BCRP). BCRP-mediated milk secretion of drugs can be altered by isoflavones. In this study, we aimed to show how soy isoflavones and BCRP inhibitors genistein (GEN) and daidzein (DAI) can modulate the secretion of MNP into milk. Moreover, we observed that the expression of BCRP in the lactating mammary gland of sheep was significantly higher than in non-lactating sheep using Western blot analysis. These properties of MNP and MNPSO2 (monepantel sulfone, the major active metabolite of MNP), identified as a BCRP substrate in determining the interaction with BCRP, were examined by vesicular transport (VT) inhibition assays. In pharmacokinetic studies, we demonstrated the transport of MNP into milk in three experimental groups: G1 fed standard forage; G2 fed soy-enriched forage; G3 fed standard forage paired with orally administered exogenous GEN and DAI. The concentrations of MNP and MNPSO2 were analyzed by high-performance liquid chromatography. Compared to the control group (3.27 ± 1.13 vs. 5.46 ± 2.23), the AUC (0-840 h) milk/plasma ratio decreased by 40% in the soy-enriched diet group. The concentrations of GEN and DAI were determined using liquid chromatography coupled with tandem mass spectrometry in soy. A VT inhibition assay was conducted to determine the IC50 values for MNP and MNPSO2 as BCRP inhibitors. This study showed that milk excretion of a BCRP substrate, such as monepantel, can be diminished by the presence of isoflavones in the diet.


Assuntos
Isoflavonas , Leite , Animais , Ovinos , Leite/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Isoflavonas/análise , Isoflavonas/farmacologia , Genisteína/farmacologia , Genisteína/análise
2.
Xenobiotica ; 49(7): 840-851, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30022699

RESUMO

The concentrative nucleoside transporters (CNT; solute carrier family 28 (SLC28)) and the equilibrative nucleoside transporters (ENT; solute carrier family 29 (SLC29)) are important therapeutic targets but may also mediate toxicity or adverse events. To explore the relative role of the base and the monosaccharide moiety in inhibitor selectivity we selected compounds that either harbor an arabinose moiety or a cytosine moiety, as these groups had several commercially available drug members. The screening data showed that more compounds harboring a cytosine moiety displayed potent interactions with the CNTs than compounds harboring the arabinose moiety. In contrast, ENTs showed a preference for compounds with an arabinose moiety. The correlation between CNT1 and CNT3 was good as five of six compounds displayed IC50 values within the threefold threshold and one displayed a borderline 4-fold difference. For CNT1 and CNT2 as well as for CNT2 and CNT3 only two of six IC50 values correlated and one displayed a borderline 4-fold difference. Interestingly, of the six compounds that potently interacted with both ENT1 and ENT2 only nelarabine displayed selectivity. Our data show differences between inhibitor selectivities of CNTs and ENTs as well as differences within the CNT family members.


Assuntos
Antivirais , Arabinonucleosídeos , Transportador Equilibrativo 1 de Nucleosídeo , Proteínas de Membrana Transportadoras , Animais , Antivirais/química , Antivirais/farmacocinética , Antivirais/farmacologia , Arabinonucleosídeos/química , Arabinonucleosídeos/farmacocinética , Arabinonucleosídeos/farmacologia , Cães , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Células Madin Darby de Rim Canino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
3.
Phytother Res ; 32(8): 1647-1650, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29672961

RESUMO

The use and significance of baicalin, the main bioactive component found in Radix Scutellaria, have been on the rise due to its interesting pharmacological properties. Baicalin, a low passive permeability compound, is directly absorbed from the upper intestine and its hepatic elimination is dominant. However, interaction but no transport studies have implicated organic anion­transporting polypeptides in its cellular uptake. By using mammalian cells stably expressing the uptake transporters of interest, we are showing that baicalin is a potent substrate of Organic anion­transporting polypeptide 2B1 (OATP2B1) and less potent substrate of OATP1B3. OATP2B1 and OATP1B3 transport baicalin and may play a role in the hepatic uptake of baicalin formed in the intestine.


Assuntos
Flavonoides/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Animais , Transporte Biológico , Cães , Células HEK293 , Humanos , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Células Madin Darby de Rim Canino
4.
J Membr Biol ; 248(6): 967-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25926125

RESUMO

ATP-binding cassette sub-family B member 1 (ABCB1) [P-glycoprotein (P-gp), multidrug resistance protein 1 (MDR1)] can affect the pharmacokinetics, safety, and efficacy of drugs making it important to identify compounds that interact with ABCB1. The ATPase assay and vesicular transport (VT) assay are membrane based assays that can be used to measure the interaction of compounds with ABCB1 at a lower cost and higher throughput compared to cellular-based assays and therefore can be used earlier in the drug development process. To that end, we tested compounds previously identified as ABCB1 substrates and inhibitors for interaction with ABCB1 using the ATPase and VT assays. All compounds tested interacted with ABCB1 in both the ATPase and VT assays. All compounds previously identified as ABCB1 substrates activated ABCB1-mediated ATPase activity in the ATPase assay. All compounds previously identified as ABCB1 inhibitors inhibited the ABCB1-mediated transport in the VT assay. Interestingly, six of the ten compounds previously identified as ABCB1 inhibitors activated the basal ATPase activity in activation assays suggesting that the compounds are substrates of ABCB1 but can inhibit ABCB1 in inhibition assays. Importantly, for ATPase activators the EC50 of activation correlated with the IC50 values from the VT assay showing that interactions of compounds with ABCB1 can be measured with similar levels of potency in either assay. For ATPase nonactivators the IC50 values from the ATPase inhibition and VT inhibition assay showed correlation. These results demonstrate the utility of membrane assays as tools to detect and rank order drug-transporter interactions.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Colchicina/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Concentração Inibidora 50 , Cinética , Paclitaxel/farmacologia
5.
Phytother Res ; 29(12): 1987-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26400418

RESUMO

Baicalein, the aglycone formed by hydrolysis of baicalin in the intestine, is well absorbed by passive diffusion but subjected to extensive intestinal glucuronidation. Efflux of baicalin, the low passive permeability glucuronide of baicalein from enterocytes, likely depends on a carrier-mediated transport. The present study was designed to explore potential drug-herb interaction by investigating the inhibitory effect of baicalin on the transport of reporter substrates by transporters and to identify the transporters responsible for the efflux of baicalin from enterocytes and hepatocytes. The interaction of baicalin with specific ABC transporters was studied using membranes from cells overexpressing human BCRP, MDR1, MRP2, MRP3 and MRP4. Baicalin was tested for its potential to inhibit vesicular transport by these transporters. The transport of baicalin by the selected transporters was also investigated. Transport by BCRP, MRP3 and MRP4 was inhibited by baicalin with an IC50 of 3.41 ± 1.83 µM, 14.01 ± 2.51 µM and 14.39 ± 5.69 µM respectively. Inhibition of MDR1 (IC50 = 94.84 ± 31.10 µM) and MRP2 (IC50 = 210.13 ± 110.49 µM) was less potent. MRP2 and BCRP are the apical transporters of baicalin that may mediate luminal efflux in enterocytes and biliary efflux in hepatocytes. The basolateral efflux of baicalin is likely mediated by MRP3 and MRP4 both in enterocytes and hepatocytes. Via inhibition of transport by ABC transporters, baicalin could interfere with the absorption and disposition of drugs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Enterócitos/efeitos dos fármacos , Flavonoides/farmacologia , Hepatócitos/efeitos dos fármacos , Interações Ervas-Drogas , Transporte Biológico/efeitos dos fármacos , Enterócitos/metabolismo , Glucuronídeos/farmacologia , Hepatócitos/metabolismo , Humanos
6.
Drug Discov Today Technol ; 12: e105-12, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25027368

RESUMO

Drug transporter proteins recruit to pharmacological barrier tissues and profoundly affect the ADME properties of a large number of drugs. In vitro assays optimized for drug transporters have grown into routine tools in the determination of molecular level interactions as well as prediction of barrier penetration and system level pharmacokinetics. Regulatory position mandates increasing interest in the application of these assays during drug development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Bioensaio/métodos , Descoberta de Drogas/métodos , Transportadores de Ânions Orgânicos/metabolismo , Preparações Farmacêuticas , Farmacocinética , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Sítios de Ligação , Transporte Biológico , Membrana Celular/metabolismo , Interações Medicamentosas , Humanos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Preparações Farmacêuticas/metabolismo , Especificidade por Substrato
7.
Arch Toxicol ; 88(6): 1205-48, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24777822

RESUMO

The discovery and characterization of breast cancer resistance protein (BCRP) as an efflux transporter conferring multidrug resistance has set off a remarkable trajectory in the understanding of its role in physiology and disease. While the relevance in drug resistance and general pharmacokinetic properties quickly became apparent, the lack of a characteristic phenotype in genetically impaired animals and humans cast doubt on the physiological importance of this ATP-binding cassette family member, similarly to fellow multidrug transporters, despite well-known endogenous substrates. Later, high-performance genetic analyses and fine resolution tissue expression data forayed into unexpected territories concerning BCRP relevance, and ultimately, the rise of quantitative proteomics allows putting observed interactions into absolute frameworks for modeling and insight into interindividual and species differences. This overview summarizes existing knowledge on the BCRP transporter on molecular, tissue and system level, both in physiology and disease, and describes a selection of experimental procedures that are the most widely applied for the identification and characterization of substrate and inhibitor-type interactions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Resistência a Múltiplos Medicamentos/fisiologia , Proteínas de Neoplasias/fisiologia , Xenobióticos/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Humanos , Modelos Biológicos , Proteínas de Neoplasias/genética , Proteômica/métodos , Especificidade da Espécie , Especificidade por Substrato
8.
Clin Exp Rheumatol ; 31(5): 779-87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23711386

RESUMO

MDR-ABC transporters are widely expressed in cell types relevant to pathogenesis of rheumatoid arthritis. Many reports demonstrate the interaction of small molecule drugs with MDR-ABC transporters. Cell-based assays for disease relevant cell types can be easily gated and could reveal specific drug targets and may increase significance and utilisation of data in clinical practice. Many commonly used DMARDs (e.g. methotrexate, sulfasalazine, leflunomide/teriflunomide, hydroxychloroquine) are ABCG2 substrates. Consequently, the activity of this transporter in patients should be determined to understand the disposition and pharmacokinetics of the therapy. In addition, MDR-ABC transporters transport a variety of endobiotics that play important roles in cell proliferation, cell migration, angiogenesis and inflammation. Therefore, MDR-ABC transporters are important biomarkers in rheumatoid arthritis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antirreumáticos/farmacocinética , Artrite Reumatoide/metabolismo , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Artrite Reumatoide/tratamento farmacológico , Biomarcadores/metabolismo , Interações Medicamentosas , Resistência a Múltiplos Medicamentos , Humanos , Prognóstico
9.
Pharmaceutics ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36678658

RESUMO

Bile acids and bile salts (BA/BS) are substrates of both influx and efflux transporters on hepatocytes. Canalicular efflux transporters, such as BSEP and MRP2, are crucial for the removal of BA/BS to the bile. Basolateral influx transporters, such as NTCP, OATP1B1/1B3, and OSTα/ß, cooperate with canalicular transporters in the transcellular vectorial flux of BA/BS from the sinusoids to the bile. The blockage of canalicular transporters not only impairs the bile flow but also causes the intracellular accumulation of BA/BS in hepatocytes that contributes to, or even triggers, liver injury. In the case of BA/BS overload, the efflux of these toxic substances back to the blood via MRP3, MRP4, and OST α/ß is considered a relief function. FXR, a key regulator of defense against BA/BS toxicity suppresses de novo bile acid synthesis and bile acid uptake, and promotes bile acid removal via increased efflux. In drug development, the early testing of the inhibition of these transporters, BSEP in particular, is important to flag compounds that could potentially inflict drug-induced liver injury (DILI). In vitro test systems for efflux transporters employ membrane vesicles, whereas those for influx transporters employ whole cells. Additional in vitro pharmaceutical testing panels usually include cellular toxicity tests using hepatocytes, as well as assessments of the mitochondrial toxicity and accumulation of reactive oxygen species (ROS). Primary hepatocytes are the cells of choice for toxicity testing, with HepaRG cells emerging as an alternative. Inhibition of the FXR function is also included in some testing panels. The molecular weight and hydrophobicity of the drug, as well as the steady-state total plasma levels, may positively correlate with the DILI potential. Depending on the phase of drug development, the physicochemical properties, dosing, and cut-off values of BSEP IC50 ≤ 25-50 µM or total Css,plasma/BSEP IC50 ≥ 0.1 may be an indication for further testing to minimize the risk of DILI liability.

10.
Clin Pharmacokinet ; 61(2): 167-187, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34894346

RESUMO

Cladribine is a nucleoside analog that is phosphorylated in its target cells (B and T-lymphocytes) to its active triphosphate form (2-chlorodeoxyadenosine triphosphate). Cladribine tablets 10 mg (Mavenclad®), administered for up to 10 days per year in 2 consecutive years (3.5-mg/kg cumulative dose over 2 years), are used to treat patients with relapsing multiple sclerosis. Cladribine has been shown to be a substrate of various nucleoside transporters (NTs). Intestinal absorption and distribution of cladribine throughout the body appear to be essentially mediated by equilibrative NTs (ENTs) and concentrative NTs (CNTs), specifically by ENT1, ENT2, ENT4, CNT2 (low affinity), and CNT3. Other efficient transporters of cladribine are the ABC efflux transporters, specifically breast cancer resistance protein, which likely modulates the oral absorption and renal excretion of cladribine. A key transporter for the intracellular uptake of cladribine into B and T-lymphocytes is ENT1 with ancillary contributions of ENT2 and CNT2. Transporter-based drug interactions affecting absorption and target cellular uptake of a prodrug such as cladribine are likely to reduce systemic bioavailability and target cell exposure, thereby possibly hampering clinical efficacy. In order to manage optimized therapy, i.e., to ensure uncompromised target cell uptake to preserve the full therapeutic potential of cladribine, it is important that clinicians are aware of the existence of NT-inhibiting medicinal products, various lifestyle drugs, and food components. This article reviews the existing knowledge on inhibitors of NT, which may alter cladribine absorption, distribution, and uptake into target cells, thereby summarizing the existing knowledge on optimized methods of administration and concomitant drugs that should be avoided during cladribine treatment.


Assuntos
Cladribina , Proteínas de Transporte de Nucleosídeos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Cladribina/farmacologia , Interações Medicamentosas , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Neoplasias/metabolismo
11.
Biopharm Drug Dispos ; 32(9): 530-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22083890

RESUMO

The citrus flavonoid hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone) is the aglycone of hesperidin, the major flavonoid present in sweet oranges. Hesperetin 7-O-glucuronide (H7G) and hesperetin 3'-O-glucuronide (H3'G) are the two most abundant metabolites of hesperetin in vivo. In this study, their interaction with specific ABC transporters, believed to play a role in the disposition and bioavailability of hesperetin, was studied using Sf9 membranes from cells overexpressing human BCRP (ABCG2), MRP2 (ABCC2) and MRP3 (ABCC3). Both H7G and H3'G were tested for their potential to activate and inhibit ATPase activity, and to inhibit vesicular transport by these transporters. Both H7G and H3'G demonstrated interaction with all tested ABC transporters, especially with BCRP and MRP3. An interesting difference between H7G and H3'G was seen with respect to the interaction with BCRP: H7G stimulated the ATPase activity of BCRP up to 76% of the maximal effect generated by the reference activator sulfasalazine, with an EC(50) of 0.45 µM, suggesting that H7G is a high affinity substrate of BCRP, whereas H3'G did not stimulate BCRP ATPase activity. Only moderate inhibition of BCRP ATPase activity at high H3'G concentrations was observed. This study provides information on the potential of hesperetin glucuronide conjugates to act as specific ABC transporter substrates or inhibitors and indicates that regio-specific glucuronidation could affect the disposition of hesperetin.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Glucuronídeos/farmacologia , Hesperidina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/metabolismo , Animais , Baculoviridae/genética , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/genética , Spodoptera/genética , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo
12.
Pharmaceutics ; 13(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204277

RESUMO

BACKGROUND: Serum urate (SU) levels in primates are extraordinarily high among mammals. Urate is a Janus-faced molecule that acts physiologically as a protective antioxidant but provokes inflammation and gout when it precipitates at high concentrations. Transporters play crucial roles in urate disposition, and drugs that interact with urate transporters either by intention or by accident may modulate SU levels. We examined whether in vitro transporter interaction studies may clarify and predict such effects. METHODS: Transporter interaction profiles of clinically proven urate-lowering (uricosuric) and hyperuricemic drugs were compiled from the literature, and the predictive value of in vitro-derived cut-offs like Cmax/IC50 on the in vivo outcome (clinically relevant decrease or increase of SU) was assessed. RESULTS: Interaction with the major reabsorptive urate transporter URAT1 appears to be dominant over interactions with secretory transporters in determining the net effect of a drug on SU levels. In vitro inhibition interpreted using the recommended cut-offs is useful at predicting the clinical outcome. CONCLUSIONS: In vitro safety assessments regarding urate transport should be done early in drug development to identify candidates at risk of causing major imbalances. Attention should be paid both to the inhibition of secretory transporters and inhibition or trans-stimulation of reabsorptive transporters, especially URAT1.

13.
Clin Pharmacokinet ; 60(12): 1509-1535, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34435310

RESUMO

Cladribine is a nucleoside analog that is phosphorylated in its target cells (B- and T-lymphocytes) to its active adenosine triphosphate form (2-chlorodeoxyadenosine triphosphate). Cladribine tablets 10 mg (Mavenclad®) administered for up to 10 days per year in 2 consecutive years (3.5-mg/kg cumulative dose over 2 years) are used to treat patients with relapsing multiple sclerosis. The ATP-binding cassette, solute carrier, and nucleoside transporter substrate, inhibitor, and inducer characteristics of cladribine are reviewed in this article. Available evidence suggests that the distribution of cladribine across biological membranes is facilitated by a number of uptake and efflux transporters. Among the key ATP-binding cassette efflux transporters, only breast cancer resistance protein has been shown to be an efficient transporter of cladribine, while P-glycoprotein does not transport cladribine well. Intestinal absorption, distribution throughout the body, and intracellular uptake of cladribine appear to be exclusively mediated by equilibrative and concentrative nucleoside transporters, specifically by ENT1, ENT2, ENT4, CNT2 (low affinity), and CNT3. Renal excretion of cladribine appears to be most likely driven by breast cancer resistance protein, ENT1, and P-glycoprotein. The latter may play a role despite its poor cladribine transport efficiency in view of the renal abundance of P-glycoprotein. There is no evidence that solute carrier uptake transporters such as organic anion transporting polypeptides, organic anion transporters, and organic cation transporters are involved in the transport of cladribine. Available in vitro studies examining the inhibitor characteristics of cladribine for a total of 13 major ATP-binding cassette, solute carrier, and CNT transporters indicate that in vivo inhibition of any of these transporters by cladribine is unlikely.


Assuntos
Cladribina , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Cladribina/farmacologia , Humanos , Proteínas de Membrana Transportadoras , Proteínas de Neoplasias/metabolismo
14.
Eur J Pharm Sci ; 156: 105593, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059043

RESUMO

BCRP / ABCG2 is a key determinant of pharmacokinetics of substrate drugs. Several BCRP substrates and inhibitors are of low passive permeability, and the vesicular transport assay works well in this permeability space. Membranes were prepared from BCRP-HEK293, MCF-7/MX, and baculovirus-infected Sf9 cells with (BCRP-Sf9-HAM), and without (BCRP-Sf9) cholesterol loading. Km values for three substrates - estrone-3-sulfate, sulfasalazine, topotecan - correlated well between the four expression systems. In contrast, a 10-20-fold range in Vmax values was observed, with BCRP-HEK293 membranes possessing the largest dynamic range. IC50 values of the different test systems were similar to each other, with 94.4% of pairwise comparisons being within 3-fold. Substrate dependent inhibition showed somewhat greater variation, as 81.4% of IC50 values in the BCRP-HEK293 membranes were within 3-fold in pairwise comparisons. Overall, BCRP-HEK293 membranes demonstrated the highest activity. The IC50 values showed good concordance but substrate dependent inhibition was observed for some drugs.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Topotecan
15.
Drug Metab Rev ; 42(3): 402-36, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20082599

RESUMO

ABCC2/Abcc2 (MRP2/Mrp2) is expressed at major physiological barriers, such as the canalicular membrane of liver cells, kidney proximal tubule epithelial cells, enterocytes of the small and large intestine, and syncytiotrophoblast of the placenta. ABCC2/Abcc2 always localizes in the apical membranes. Although ABCC2/Abcc2 transports a variety of amphiphilic anions that belong to different classes of molecules, such as endogenous compounds (e.g., bilirubin-glucuronides), drugs, toxic chemicals, nutraceuticals, and their conjugates, it displays a preference for phase II conjugates. Phenotypically, the most obvious consequence of mutations in ABCC2 that lead to Dubin-Johnson syndrome is conjugate hyperbilirubinemia. ABCC2/Abcc2 harbors multiple binding sites and displays complex transport kinetics.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Transporte Biológico Ativo , Clonagem Molecular , Resistência a Múltiplos Medicamentos , Humanos , Cinética , Camundongos , Camundongos Knockout , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Conformação Proteica , Xenobióticos/metabolismo
16.
Drug Metab Dispos ; 38(11): 2000-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20699410

RESUMO

Seliciclib, a cyclin-dependent kinase inhibitor, is a promising candidate to treat a variety of cancers. Pharmacokinetic studies have shown high oral bioavailability but limited brain exposure to the drug. This study shows that seliciclib is a high-affinity substrate of ATP-binding cassette B1 (ABCB1) because it activates the ATPase activity of the transporter with an EC(50) of 4.2 µM and shows vectorial transport in MDCKII-MDR1 cells, yielding an efflux ratio of 8. This interaction may be behind the drug's limited penetration of the blood-brain barrier. ABCB1 overexpression, on the other hand, does not confer resistance to the drug in the models tested. These findings should be considered when treatment strategies using seliciclib are designed.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Purinas/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Western Blotting , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Purinas/farmacologia , Roscovitina , Especificidade por Substrato , Distribuição Tecidual
17.
Pharmaceutics ; 12(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796590

RESUMO

Bilirubin, the end product of heme catabolism, is produced continuously in the body and may reach toxic levels if accumulates in the serum and tissues; therefore, a highly efficient mechanism evolved for its disposition. Normally, unconjugated bilirubin enters hepatocytes through the uptake transporters organic anion transporting polypeptide (OATP) 1B1 and 1B3, undergoes glucuronidation by the Phase II enzyme UDP glucuronosyltransferase 1A1 (UGT1A1), and conjugated forms are excreted into the bile by the canalicular export pump multidrug resistance protein 2 (MRP2). Any remaining conjugated bilirubin is transported back to the blood by MRP3 and passed on for uptake and excretion by downstream hepatocytes or the kidney. The bile salt export pump BSEP as the main motor of bile flow is indirectly involved in bilirubin disposition. Genetic mutations and xenobiotics that interfere with this machinery may impede bilirubin disposition and cause hyperbilirubinemia. Several pharmaceutical compounds are known to cause hyperbilirubinemia via inhibition of OATP1Bs, UGT1A1, or BSEP. Herein we briefly review the in vitro prediction methods that serve to identify drugs with a potential to induce hyperbilirubinemia. In vitro assays can be deployed early in drug development and may help to minimize late-stage attrition. Based on current evidence, drugs that behave as mono- or multispecific inhibitors of OATP1B1, UGT1A1, and BSEP in vitro are at risk of causing clinically significant hyperbilirubinemia. By integrating inhibition data from in vitro assays, drug serum concentrations, and clinical reports of hyperbilirubinemia, predictor cut-off values have been established and are provisionally suggested in this review. Further validation of in vitro readouts to clinical outcomes is expected to enhance the predictive power of these assays.

18.
J Biomol Screen ; 14(1): 10-5, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19029016

RESUMO

The mouse ortholog of the human bile salt export pump (BSEP) transporter was expressed in a baculovirus-infected insect cell (Sf9) system to study the effect of membrane cholesterol content on the transporter function. The transport activity of cholesterol-loaded mouse Bsep-HAM-Sf9 vesicles was determined in a vesicular transport assay with taurochenodeoxycholate (TCDC), a known BSEP substrate. Mouse Bsep transports TCDC at a high rate that can be sensitively detected in the ATPase assay. Cholesterol upload of the Sf9 membrane potentiates both TCDC transport and TCDC-stimulated ATPase activities. Inhibitory effect of BSEP interactors on probe substrate transport was tested in both vesicular transport and ATPase assays using cholesterol-loaded membrane vesicles. A good rank order correlation was found between IC(50) values measured in TCDC-stimulated mBsep ATPase assay and in the human BSEP vesicular transport assay utilizing taurocholate (TC) as probe substrate. This upgraded form of the mouse Bsep-HAM ATPase assay is a user friendly, sensitive, nonradioactive method for early high-throughput screening of drugs with BSEP-related cholestatic potential. It may complement the human BSEP-mediated taurocholate vesicular transport inhibition assay.


Assuntos
Transportadores de Cassetes de Ligação de ATP/análise , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/metabolismo , Colesterol/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/antagonistas & inibidores , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Colestase/tratamento farmacológico , Colesterol/farmacologia , Camundongos , Ensaio Radioligante , Spodoptera
19.
Drug Metab Dispos ; 37(9): 1878-86, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19520776

RESUMO

The efflux transporter responsible for the canalicular elimination of bile salts from the hepatocytes is the bile salt export pump (BSEP, ABCB11). Absence or inhibition of this transporter leads to bile salt retention in the hepatocyte and in turn can lead to cholestatic liver disease. We expressed the BSEP/Bsep protein from three species (human, rat, and mouse) in a baculovirus-infected Sf9 system. Vesicles prepared from these cells were used to evaluate bile salt transport of four conjugated bile salts. Because the Sf9 system contains less membrane cholesterol than the liver canalicular membrane, the effect of added cholesterol on the kinetics of BSEP/Bsep-mediated bile salt transport was also investigated. Cholesterol treatment increased the V(max) values in all the species, with the most pronounced effect observed in the rat transporter. In contrast, K(m) values, with the exception of glycochenodeoxycholate, remained largely unchanged. The species-specific bile salt transport inhibition potential of three compounds known to cause clinical cholestasis was investigated in vesicles containing BSEP/Bsep. Troglitazone and glibenclamide inhibited the BSEP/Bsep-mediated transport of different bile salts with similar affinities, whereas the potential of cyclosporine A to inhibit bile salt transport showed species- and bile salt-specific variations. In conclusion, the cholesterol-loaded Sf9 vesicles overexpressing BSEP/Bsep seem to be a useful system for the identification of potential cholestatic compounds and can also be used for the investigation of species specificity. We observed greater differences in IC(50) values for inhibitors than in K(m) values for substrates between species.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/farmacologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Ácidos e Sais Biliares/metabolismo , Transporte Biológico Ativo , Western Blotting , Linhagem Celular , Membrana Celular/metabolismo , Cromanos/metabolismo , Ciclosporina/metabolismo , Eletroforese em Gel de Poliacrilamida , Glibureto/metabolismo , Humanos , Hipoglicemiantes/metabolismo , Imunossupressores/metabolismo , Insetos/metabolismo , Cinética , Camundongos , Ratos , Especificidade da Espécie , Especificidade por Substrato , Tiazolidinedionas/metabolismo , Troglitazona , Proteínas de Transporte Vesicular/metabolismo
20.
Naunyn Schmiedebergs Arch Pharmacol ; 379(1): 11-26, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18758752

RESUMO

We tested the hypothesis whether data on ABCB1 ATPase activity and passive permeability can be used in combination to identify ABCB1 substrates and inhibitors. We determined passive permeability using an artificial membrane permeability assay (HDM-PAMPA) and ABCB1 function, i.e., vanadate-sensitive ATPase activity for a training set (40 INN drugs) and a validation set (26 development compounds). In parallel experiments, we determined ABCB1 function, i.e., vectorial transport in a Caco-2 cell monolayer, and ABCB1 inhibition, i.e., calcein AM extrusion out of K562-MDR cells, to cross-validate the results with cellular assays. We found that compounds that did not modulate ABCB1-ATPase did also not affect calcein AM extrusion and were not actively transported by ABCB1 in Caco-2 cell monolayers. The results corroborated the effect of passive permeability as an important covariate of active transport: active transport in Caco-2 monolayer was only apparent for compounds showing low passive permeability (<5.0 cmx10(-6)/s) in the HDM-PAMPA assay whereas compounds with high passive permeability (>50 cmx10(-6)/s) were shown to inhibit calcein AM efflux with IC50 values close to their respective Km value obtained for ABCB1-ATPase. The use of HDM-PAMPA in combination with ABCB1-ATPase offers a simple, inexpensive experimental approach capable of identifying ABCB1 inhibitors as well as transported substrates.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Células CACO-2 , Permeabilidade da Membrana Celular , Química Farmacêutica , Humanos , Células K562 , Membranas Artificiais , Permeabilidade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA