Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Res Natl Inst Stand Technol ; 120: 252-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26958449

RESUMO

This article reports a process for rapidly prototyping nanofluidic devices, particularly those comprising slits with microscale widths and nanoscale depths, in silicone. This process consists of designing a nanofluidic device, fabricating a photomask, fabricating a device mold in epoxy photoresist, molding a device in silicone, cutting and punching a molded silicone device, bonding a silicone device to a glass substrate, and filling the device with aqueous solution. By using a bilayer of hard and soft silicone, we have formed and filled nanofluidic slits with depths of less than 400 nm and aspect ratios of width to depth exceeding 250 without collapse of the slits. An important attribute of this article is that the description of this rapid prototyping process is very comprehensive, presenting context and details which are highly relevant to the rational implementation and reliable repetition of the process. Moreover, this process makes use of equipment commonly found in nanofabrication facilities and research laboratories, facilitating the broad adaptation and application of the process. Therefore, while this article specifically informs users of the Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST), we anticipate that this information will be generally useful for the nanofabrication and nanofluidics research communities at large, and particularly useful for neophyte nanofabricators and nanofluidicists.

2.
Electrophoresis ; 35(12-13): 1887-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24648165

RESUMO

We investigated the ability of gradient elution moving boundary electrophoresis (GEMBE) with capacitively coupled contactless conductivity detection (C(4) D) to assay total protein concentration using the bicinchoninic acid (BCA) reaction. We chose this format because GEMBE-C(4) D behaves as a concentration dependent detection system, unlike optical methods that also rely on pathlength (due to Beer's law). This system tolerates proteins well compared with other capillary electrophoretic methods, allowing the capillary to be reused without coatings or additional hydroxide wash steps. The typical reaction protocol was modified by reducing the pH slightly from 11.25 to 9.4, which enabled elimination of tartrate from the reagents. We estimated that copper (I) could be detected at approximately 3.0 µmol/L, which agrees with similar GEMBE and CZE systems utilizing C(4) D. Under conditions similar to the BCA "micro method" assay, we determined the LOD for three common proteins (insulin, BSA, and bovine gamma globulin) and found that they agree well with the existing spectroscopic detection methods. Further, we investigated how long reaction times impact the LOD and found that the conversion was proportional to log(time). This indicated that little sensitivity is gained by extending the reaction past 1 h. Hence, GEMBE provides an alternative platform for total protein assays while maintaining the excellent sensitivity of the optical-based methods.


Assuntos
Eletroforese Capilar/métodos , Proteínas/análise , Quinolinas/química , Condutividade Elétrica , Limite de Detecção
3.
Sci Rep ; 14(1): 9785, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684791

RESUMO

Several studies have documented the significant impact of methodological choices in microbiome analyses. The myriad of methodological options available complicate the replication of results and generally limit the comparability of findings between independent studies that use differing techniques and measurement pipelines. Here we describe the Mosaic Standards Challenge (MSC), an international interlaboratory study designed to assess the impact of methodological variables on the results. The MSC did not prescribe methods but rather asked participating labs to analyze 7 shared reference samples (5 × human stool samples and 2 × mock communities) using their standard laboratory methods. To capture the array of methodological variables, each participating lab completed a metadata reporting sheet that included 100 different questions regarding the details of their protocol. The goal of this study was to survey the methodological landscape for microbiome metagenomic sequencing (MGS) analyses and the impact of methodological decisions on metagenomic sequencing results. A total of 44 labs participated in the MSC by submitting results (16S or WGS) along with accompanying metadata; thirty 16S rRNA gene amplicon datasets and 14 WGS datasets were collected. The inclusion of two types of reference materials (human stool and mock communities) enabled analysis of both MGS measurement variability between different protocols using the biologically-relevant stool samples, and MGS bias with respect to ground truth values using the DNA mixtures. Owing to the compositional nature of MGS measurements, analyses were conducted on the ratio of Firmicutes: Bacteroidetes allowing us to directly apply common statistical methods. The resulting analysis demonstrated that protocol choices have significant effects, including both bias of the MGS measurement associated with a particular methodological choices, as well as effects on measurement robustness as observed through the spread of results between labs making similar methodological choices. In the analysis of the DNA mock communities, MGS measurement bias was observed even when there was general consensus among the participating laboratories. This study was the result of a collaborative effort that included academic, commercial, and government labs. In addition to highlighting the impact of different methodological decisions on MGS result comparability, this work also provides insights for consideration in future microbiome measurement study design.


Assuntos
Fezes , Metagenômica , Microbiota , RNA Ribossômico 16S , Humanos , Metagenômica/métodos , Metagenômica/normas , RNA Ribossômico 16S/genética , Fezes/microbiologia , Microbiota/genética , Viés , Metagenoma , Microbioma Gastrointestinal/genética , Análise de Sequência de DNA/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
Anal Bioanal Chem ; 405(1): 315-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23086083

RESUMO

Using spike-in controls designed to mimic mammalian mRNA species, we used the quantitative reverse transcription polymerase chain reaction (RT-qPCR) to assess the performance of in vitro transcription (IVT) amplification process of small samples. We focused especially on the confidence of the transcript level measurement, which is essential for differential gene expression analyses. IVT reproduced gene expression profiles down to approximately 100 absolute input copies. However, a RT-qPCR analysis of the antisense RNA showed a systematic bias against low copy number transcripts, regardless of sequence. Experiments also showed that noise increases with decreasing copy number. First-round IVT preserved the gene expression information within a sample down to the 100 copy level, regardless of total input sample amount. However, the amplification was nonlinear under low total RNA input/long IVT conditions. Variability of the amplification increased predictably with decreasing input copy number. For the small enrichments of interest in typical differential gene expression studies (e.g., twofold changes), the bias from IVT reactions is unlikely to affect the results. In limited cases, some transcript-specific differential gene expression values will need adjustment to reflect this bias. Proper experimental design with reasonable detection limits will yield differential gene expression capability even between low copy number transcripts.


Assuntos
Dosagem de Genes , RNA/análise , Técnicas de Química Analítica , Primers do DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células Jurkat , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo , Análise de Regressão , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transcrição Gênica
5.
Water Res ; 225: 119162, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191524

RESUMO

Surface water quality quantitative polymerase chain reaction (qPCR) technologies are expanding from a subject of research to routine environmental and public health laboratory testing. Readily available, reliable reference material is needed to interpret qPCR measurements, particularly across laboratories. Standard Reference Material® 2917 (NIST SRM® 2917) is a DNA plasmid construct that functions with multiple water quality qPCR assays allowing for estimation of total fecal pollution and identification of key fecal sources. This study investigates SRM 2917 interlaboratory performance based on repeated measures of 12 qPCR assays by 14 laboratories (n = 1008 instrument runs). Using a Bayesian approach, single-instrument run data are combined to generate assay-specific global calibration models allowing for characterization of within- and between-lab variability. Comparable data sets generated by two additional laboratories are used to assess new SRM 2917 data acceptance metrics. SRM 2917 allows for reproducible single-instrument run calibration models across laboratories, regardless of qPCR assay. In addition, global models offer multiple data acceptance metric options that future users can employ to minimize variability, improve comparability of data across laboratories, and increase confidence in qPCR measurements.


Assuntos
Benchmarking , Qualidade da Água , Teorema de Bayes , Reação em Cadeia da Polimerase em Tempo Real , DNA
6.
Lab Chip ; 10(22): 3139-48, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-20886128

RESUMO

A new method is described for two-dimensional (2D) separations using a microfluidic chip normally employed for single dimension electrophoresis. The method employs a combination of gradient elution moving boundary electrophoresis (GEMBE) and chiral capillary zone electrophoresis (CZE). The simplicity of the first dimension GEMBE method enables its implementation in the injection channel of a conventional electrophoresis chip, simplifying the design and operation of the device. The method was used for high resolution 2D chiral separations of a mixture of amino acids considered as possible signatures of extant or extinct life for solar system exploration. The enantiomers of aspartic acid, glutamic acid, serine, alanine, and valine were all resolved as well as glycine (achiral) and several unidentified impurities, giving an estimated peak capacity of 35 for the region between valine and glycine. The results highlight the need for high peak capacity separations for chiral amino acid analysis if accurate enantiomeric ratios are to be determined.

7.
Lab Chip ; 10(18): 2402-10, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20593069

RESUMO

We describe a control system to automatically distribute antibody-functionalized beads to addressable assay chambers within a PDMS microfluidic device. The system used real-time image acquisition and processing to manage the valve states required to sort beads with unit precision. The image processing component of the control system correctly counted the number of beads in 99.81% of images (2689 of 2694), with only four instances of an incorrect number of beads being sorted to an assay chamber, and one instance of inaccurately counted beads being improperly delivered to waste. Post-experimental refinement of the counting script resulted in one counting error in 2694 images of beads (99.96% accuracy). We analyzed a range of operational variables (flow pressure, bead concentration, etc.) using a statistical model to characterize those that yielded optimal sorting speed and efficiency. The integrated device was able to capture, count, and deliver beads at a rate of approximately four per minute so that bead arrays could be assembled in 32 individually addressable assay chambers for eight analytical measurements in duplicate (512 beads total) within 2.5 hours. This functionality demonstrates the successful integration of a robust control system with precision bead handling that is the enabling technology for future development of a highly multiplexed bead-based analytical device.


Assuntos
Processamento de Imagem Assistida por Computador , Técnicas Analíticas Microfluídicas/instrumentação , Microesferas , Algoritmos , Dimetilpolisiloxanos/química , Desenho de Equipamento , Modelos Estatísticos , Software , Fatores de Tempo
8.
Lab Chip ; 9(7): 917-24, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19294302

RESUMO

We have demonstrated in vitro transcription (IVT) of cDNA sequences from purified Jurkat T-cell mRNA immobilized on microfluidic packed beds down to single-cell quantities. The microfluidically amplified antisense-RNA (aRNA) was nearly identical in length and quantity compared with benchtop reactions using the same starting sample quantities. Microarrays were used to characterize the number and population of genes in each sample, allowing comparison of the microfluidic and benchtop processes. For both benchtop and microfluidic assays, we measured the expression of approximately 4000 to 9000 genes for sample amounts ranging from 20 pg to 10 ng (2 to 1000 cell equivalents), corresponding to 41 to 93% of the absolute number of genes detected from a 100 ng total RNA control sample. Concordance of genes detected between methods (benchtop vs. microfluidic) and repeats (microfluidic vs. microfluidic) typically exceeded 90%. Validation of microarray by Real-time PCR of a panel of five genes suggests transcription of genes present is approximately six times more efficient with the microfluidic IVT compared with benchtop processing. Microfluidic IVT introduces no bias to the gene expression profile of the sample and provides more efficient transcription of mRNA sequences present at the single-cell level.


Assuntos
Microfluídica/instrumentação , Microfluídica/métodos , RNA Mensageiro/química , RNA/análise , DNA Complementar/química , DNA Complementar/genética , RNA Polimerases Dirigidas por DNA , Perfilação da Expressão Gênica/métodos , Humanos , Células Jurkat , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/genética , RNA Antissenso/análise , RNA Antissenso/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais
9.
Anal Chem ; 80(24): 9467-74, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19007187

RESUMO

A new microfluidic electrophoresis device and technique is described that is designed specifically for multiplexed, high-throughput separations. The device consists of an array of short (3 mm) capillaries connecting individual sample reservoirs to a common buffer reservoir. Each capillary in the array functions as both a separation channel and as a conductivity-based detection cell. The new technique is based upon the recently described gradient elution moving boundary electrophoresis (GEMBE) technique, which uses a combination of an electric field and buffer counterflow to achieve electrophoretic separations in short capillaries or microfluidic channels. A high voltage drives electrophoresis of the sample analytes through each separation channel. At the start of a separation, the bulk counterflow of buffer through the channel is high, and none of the analytes of interest can enter the channel. The counterflow is then gradually reduced until each analyte, in turn, is able to enter the channel where it is detected as a moving boundary or step. With very short capillaries, only one step at a time is present in each capillary, and the electric current through the channels can then be used as the detector signal, without any extra detector hardware. The current vs time signal for each channel is then smoothed and differentiated to produce a set of simultaneous electropherograms. Because there is no light source or other added hardware required for detection, the system is simple and can be easily and inexpensively scaled up to perform large numbers of simultaneous analyses. As a first demonstration, a 16-channel array device is used for high-throughput, time-series measurements of enzyme activity and inhibition.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Isoquinolinas/farmacologia , Técnicas Analíticas Microfluídicas , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Microfluídica , Oligopeptídeos/metabolismo , Fosforilação
10.
Lab Chip ; 7(2): 256-63, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17268629

RESUMO

We describe continuous flow liquid-liquid phase separation in microfluidic devices based on capillary forces and selective wetting surfaces. Effective liquid-liquid phase separation is achieved by using a thin porous fluoropolymer membrane that selectively wets non-aqueous solvents, has average pore sizes in the 0.1-1 microm range, and has a high pore density for high separation throughput. Pressure drops throughout the microfluidic network are modelled and operating regimes for the membrane phase separator are determined based on hydrodynamic pressure drops and capillary forces. A microfluidic extraction device integrating mixing and phase separation is realized by using silicon micromachining. Modeling of the phase separator establishes the operating limits. The device is capable of completely separating several organic-aqueous and fluorous-aqueous liquid-liquid systems, even with high fractions of partially miscible compounds. In each case, extraction is equivalent to one equilibrium extraction stage.

11.
Lab Chip ; 5(5): 531-5, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15856090

RESUMO

Continuous microfluidic liquid-liquid extraction is realized in a microfluidic device by generating emulsions with large interfacial areas for mass transfer, and subsequently breaking these emulsions using electric fields into easily separated segments of immiscible liquids (plugs). The microfluidic device employs insulated electrodes in a potassium hydroxide-etched channel to create large electric fields (100 kV m(-1)) that drive coalescence of the emulsion phase. The result is a transition from disperse to slug flow that can then readily be separated by gravity. Extractions of phenol and p-nitrophenol from an aqueous to hexane-surfactant solution serve as model systems. In addition to the increased surface area in the emulsion, extraction efficiency is enhanced by reverse micelles resulting from the presence of surfactants. The surfactant concentration is varied approximately 1-10 wt% and a general two-parameter model is developed to quantify the extraction behavior and demonstrate the effectiveness of reverse micelle enhanced extraction.


Assuntos
Microfluídica/instrumentação , Eletricidade Estática , Tensoativos/química , Micelas , Microfluídica/métodos , Sensibilidade e Especificidade , Propriedades de Superfície
12.
J Mater Chem B ; 1(34): 4313-4319, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261028

RESUMO

We describe batch generation of uniform multifunctional chitosan microparticles for isolation of rare cells, such as circulating tumor cells (CTCs), from a sample of whole blood. The chitosan microparticles were produced in large numbers using a simple and inexpensive microtubing arrangement. The particles were functionalized through encapsulation of carbon black, to control autofluorescence, and surface attachment of streptavidin, to enable interactions with biotinylated antibodies. These large custom modified microparticles (≈164 µm diameter) were then packed into a microfluidic channel to demonstrate their utility in rare cell capture. Blood spiked with breast cancer (MCF-7) cells was first treated with a biotinylated antibody (anti-EpCAM, which is selective for cancer cells like MCF-7) and then pumped through the device. In the process, the cancer cells were selectively bound to the microparticles through non-covalent streptavidin-biotin interactions. The number density of captured cells was determined by fluorescence microscopy at physiologically relevant levels. Selective capture of the MCF-7 cells was characterized, and compared favorably with previous approaches. The overall approach using custom synthesized microparticles is versatile, and can allow researchers more flexibility for rare cell capture through simpler and cheaper methods than are currently employed.

14.
Lab Chip ; 12(15): 2634-7, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22706612

RESUMO

We developed a computational model and theoretical framework to investigate the geometrical optimization of particle-surface interactions in a herringbone micromixer. The enhancement of biomolecule- and particle-surface interactions in microfluidic devices through mixing and streamline disruption holds promise for a variety of applications. This analysis provides guidelines for optimizing the frequency and specific location of surface interactions based on the flow pattern and relative hydraulic resistance between a groove and the effective channel. The channel bottom, i.e., channel surface between grooves, was identified as the dominant location for surface contact. In addition, geometries that decrease the groove-to-channel hydraulic resistance improve contact with the channel top. Thus, herringbone mixers appear useful for a variety of surface-interaction applications, yet they have largely not been employed in an optimized fashion.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Simulação por Computador , Desenho de Equipamento , Hidrodinâmica , Modelos Biológicos , Modelos Químicos , Propriedades de Superfície
15.
Lab Chip ; 12(23): 4972-5, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23079718

RESUMO

We have developed a system to isolate rare cells from whole blood using commercially available components and simple microfluidics. We characterized the capture of MCF-7 cells spiked into whole human blood using this system to demonstrate that enrichment and enumeration studies give results similar to in situ surface-modified devices while reducing fabrication and operation complexity.


Assuntos
Anticorpos/metabolismo , Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes/metabolismo , Linhagem Celular Tumoral , Humanos
16.
Anal Chem ; 78(14): 5019-25, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16841925

RESUMO

Continuous-flow dielectrophoretic (DEP) particle separation based on size is demonstrated in a microfluidic device. Polystyrene microspheres suspended in a neutrally buoyant aqueous solution are used as model particles to study DEP induced by an array of slanted, planar, interdigitated electrodes inside of a soft-lithography microchannel. The E-field gradients from the slanted electrodes impart a net transverse force component on the particles that causes them to "ratchet" across the channel. Over the length of the device, larger particles are deflected more than smaller particles according to the balance of hydrodynamic drag and DEP forces. Consequently, a flow-focused particle suspension containing different-sized particles is fractionated as the beads flow and separate down the length of the device. The flow behavior of spherical particles is modeled, and the total transverse particle displacement in the microfluidic device predicts fourth-order size and voltage and second-order inverse flow rate dependences. The model is verified experimentally for a range of flow rates, particle sizes, and E-field strengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA