RESUMO
Inhalation is the most relevant route of volatile organic chemical (VOC) exposure; however, due to unique challenges posed by their chemical properties and poor solubility in aqueous solutions, in vitro chemical safety testing is predominantly performed using direct application dosing/submerged exposures. To address the difficulties in screening toxic effects of VOCs, our cell culture exposure system permits cells to be exposed to multiple concentrations at air-liquid interface (ALI) in a 24-well format. ALI exposure methods permit direct chemical-to-cell interaction with the test article at physiological conditions. In the present study, BEAS-2B and primary normal human bronchial epithelial cells (pHBEC) are used to assess gene expression, cytotoxicity, and cell viability responses to a variety of volatile chemicals including acrolein, formaldehyde, 1,3-butadiene, acetaldehyde, 1-bromopropane, carbon tetrachloride, dichloromethane, and trichloroethylene. BEAS-2B cells were exposed to all the test agents, whereas pHBECs were only exposed to the latter 4 listed above. The VOC concentrations tested elicited only slight cell viability changes in both cell types. Gene expression changes were analyzed using benchmark dose (BMD) modeling. The BMD for the most sensitive gene set was within one order of magnitude of the threshold-limit value reported by the American Conference of Governmental Industrial Hygienists, and the most sensitive gene sets impacted by exposure correlate to known adverse health effects recorded in epidemiologic and in vivo exposure studies. Overall, our study outlines a novel in vitro approach for evaluating molecular-based points-of-departure in human airway epithelial cell exposure to volatile chemicals.
Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Acetaldeído , Benchmarking , Formaldeído , Humanos , Compostos Orgânicos Voláteis/análiseRESUMO
Knowledge of the appropriate metric of dose for a toxic chemical facilitates quantitative extrapolation of toxicity observed in the laboratory to the risk of adverse effects in the human population. Here, we utilize a physiologically based toxicokinetic (PBTK) model for toluene, a common volatile organic compound (VOC), to illustrate that its acute behavioral effects in rats can be quantitatively predicted on the basis of its concentration in the brain. Rats previously trained to perform a visual signal detection task for food reward performed the task while inhaling toluene (0, 1200, 1600, 2000, and 2400 ppm in different test sessions). Accuracy and speed of responding were both decreased by toluene; the magnitude of these effects increased with increasing concentration of the vapor and with increasing duration of exposure. Converting the exposure conditions to brain toluene concentration using the PBTK model yielded a family of overlapping curves for each end point, illustrating that the effects of toluene can be described quantitatively by its internal dose at the time of behavioral assessment. No other dose metric, including inhaled toluene concentration, duration of exposure, the area under the curve of either exposure (ppm h), or modeled brain toluene concentration (mg-h/kg), provided unambiguous predictions of effect. Thus, the acute behavioral effects of toluene (and of other VOCs with a similar mode of action) can be predicted for complex exposure scenarios by simulations that estimate the concentration of the VOC in the brain from the exposure scenario.
Assuntos
Comportamento Animal/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Solventes/toxicidade , Tolueno/toxicidade , Administração por Inalação , Animais , Área Sob a Curva , Atenção/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Aprendizagem/efeitos dos fármacos , Masculino , Modelos Biológicos , Ratos , Ratos Long-Evans , Tempo de Reação/efeitos dos fármacos , Detecção de Sinal Psicológico/efeitos dos fármacos , Solventes/farmacocinética , Tolueno/farmacocinéticaRESUMO
Acute exposure to toluene was assessed in two experiments to determine the relationship between brain toluene concentration and changes in neurophysiological function. The concentration of toluene in brain tissue at the time of assessment was estimated using a physiologically based pharmacokinetic model. Brain neurophysiological function was measured using pattern-elicited visual evoked potentials (VEP) recorded from electrodes located over visual cortex of adult male Long-Evans rats. In the first experiment, VEPs were recorded before and during exposure to control air or toluene at 1000 ppm for 4 h, 2000 ppm for 2 h, 3000 ppm for 1.3 h, or 4000 ppm for 1 h. In the second experiment, VEPs were recorded during and after exposure to clean air or 3000 or 4000 ppm toluene. In both experiments, the response amplitude of the major spectral component of the VEP (F2 at twice the stimulus rate in steady-state responses) was reduced by toluene. A logistic function was fit to baseline-adjusted F2 amplitudes from the first experiment that described a significant relationship between brain toluene concentration and VEP amplitude deficits. In the second experiment, 3000 ppm caused equivalent VEP deficits during or after exposure as a function of estimated brain concentration, but 4000 ppm showed a rapid partial adaptation to the acute effects of toluene after exposure. In general, however, the neurophysiological deficits caused by acute toluene exposure could be described by estimates of the momentary concentration of toluene in the brain at the time of VEP evaluation.
Assuntos
Encéfalo/metabolismo , Potenciais Evocados Visuais/efeitos dos fármacos , Tolueno/toxicidade , Animais , Masculino , Modelos Biológicos , Ratos , Ratos Long-Evans , Tolueno/farmacocinética , Tricloroetileno/toxicidadeRESUMO
Acute exposure to toluene and other volatile organic solvents results in neurotoxicity characterized by nervous system depression, cognitive and motor impairment, and alterations in visual function. In vitro, toluene disrupts the function of N-methyl-D-aspartate (NMDA)-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual-evoked potentials (VEPs) in rodents, a measure that is altered by toluene exposure. The present study tested the hypothesis that effects on NMDA receptors contribute to toluene-induced alterations in pattern-elicited VEPs. Prior to examining the effects of NMDA receptor agonists and antagonists on toluene-exposed animals, a dose-range study was conducted to determine the optimal dose for NMDA (agonist) and MK801 (antagonist). Dose levels of 2.5 mg/kg NMDA and 0.1 mg/kg MK801 were selected from these initial studies. In the second study, Long-Evans rats were exposed to toluene by inhalation, and VEPs were measured during toluene exposure in the presence or absence of NMDA or MK801. Pattern-elicited VEPs were collected by exposing rats to a sinusoidal pattern modulated at a temporal frequency of 4.55 Hz. Following collection of baseline VEPs, rats were injected with either saline, NMDA (2.5 mg/kg, ip), or MK801 (0.1 mg/kg, ip) and 10 min later were exposed to air or toluene (2000 ppm). VEP amplitudes were calculated for 1x (F1) and 2x stimulus frequency (F2). The F2 amplitude was reduced by approximately 60, 60, and 50% in the toluene-exposed groups (TOL): SALINE/TOL (n = 11), NMDA/TOL (2.5 mg/kg; n = 13), and NMDA/TOL (10 mg/kg, n = 11), respectively. Thus, NMDA (2.5 and 10 mg/kg) did not significantly affect toluene-mediated F2 amplitude effects. Administration of 0.1 mg/kg MK801 prior to toluene exposure blocked the F2 amplitude decreases caused by toluene (n = 9). However, when 0.1 mg/kg MK801 was administered 20 min after the onset of toluene exposure, toluene-mediated F2 amplitude decreases persisted despite the challenge by MK801. These data support the hypothesis that acute actions of toluene on pattern-elicited VEPs involve NMDA receptors.
Assuntos
Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Tolueno/toxicidade , Animais , Maleato de Dizocilpina/farmacologia , Potenciais Evocados Visuais/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Ratos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Solventes , Tolueno/antagonistas & inibidoresRESUMO
Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel engine exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance of normal cardiac function. To explore this putative mechanism, we examined cardiophysiologic responses to DE inhalation in a model of aged heart failure-prone rats without signs or symptoms of overt heart failure. We hypothesized that acute DE exposure would alter heart rhythm, cardiac electrophysiology, and ventricular performance and dimensions consistent with autonomic imbalance while increasing biochemical markers of toxicity. Spontaneously hypertensive heart failure rats (16 months) were exposed once to whole DE (4h, target PM(2.5) concentration: 500 µg/m(3)) or filtered air. DE increased multiple heart rate variability (HRV) parameters during exposure. In the 4h after exposure, DE increased cardiac output, left ventricular volume (end diastolic and systolic), stroke volume, HRV, and atrioventricular block arrhythmias while increasing electrocardiographic measures of ventricular repolarization (i.e., ST and T amplitudes, ST area, T-peak to T-end duration). DE did not affect heart rate relative to air. Changes in HRV positively correlated with postexposure changes in bradyarrhythmia frequency, repolarization, and echocardiographic parameters. At 24h postexposure, DE-exposed rats had increased serum C-reactive protein and pulmonary eosinophils. This study demonstrates that cardiac effects of DE inhalation are likely to occur through changes in autonomic balance associated with modulation of cardiac electrophysiology and mechanical function and may offer insights into the adverse health effects of traffic-related air pollutants.
Assuntos
Arritmias Cardíacas/induzido quimicamente , Insuficiência Cardíaca/fisiopatologia , Coração/efeitos dos fármacos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Eletrocardiografia , Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Exposição por Inalação , Masculino , Tamanho da Partícula , Ratos , Ratos Endogâmicos SHRRESUMO
Epidemiological studies strongly link short-term exposures to vehicular traffic and particulate matter (PM) air pollution with adverse cardiovascular (CV) events, especially in those with preexisting CV disease. Diesel engine exhaust is a key contributor to urban ambient PM and gaseous pollutants. To determine the role of gaseous and particulate components in diesel exhaust (DE) cardiotoxicity, we examined the effects of a 4-h inhalation of whole DE (wDE) (target PM concentration: 500 µg/m(3)) or particle-free filtered DE (fDE) on CV physiology and a range of markers of cardiopulmonary injury in hypertensive heart failure-prone rats. Arterial blood pressure (BP), electrocardiography, and heart rate variability (HRV), an index of autonomic balance, were monitored. Both fDE and wDE decreased BP and prolonged PR interval during exposure, with more effects from fDE, which additionally increased HRV triangular index and decreased T-wave amplitude. fDE increased QTc interval immediately after exposure, increased atrioventricular (AV) block Mobitz II arrhythmias shortly thereafter, and increased serum high-density lipoprotein 1 day later. wDE increased BP and decreased HRV root mean square of successive differences immediately postexposure. fDE and wDE decreased heart rate during the 4th hour of postexposure. Thus, DE gases slowed AV conduction and ventricular repolarization, decreased BP, increased HRV, and subsequently provoked arrhythmias, collectively suggesting parasympathetic activation; conversely, brief BP and HRV changes after exposure to particle-containing DE indicated a transient sympathetic excitation. Our findings suggest that whole- and particle-free DE differentially alter CV and autonomic physiology and may potentially increase risk through divergent pathways.