Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 22(2): 184-191, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33245830

RESUMO

The previously unknown silylgermylidyne radical (H3 SiGe; X2 A'') was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2 Π) with germane (GeH4 ; X1 A1 ) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium-hydrogen bond forming the germylsilyl radical (H3 GeSiH2 ). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2 GeSiH3 ), which undergoes a hydrogen shift to an exotic, hydrogen-bridged germylidynesilane intermediate (H3 Si(µ-H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3 SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon-germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2 H5 ) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon-germanium species at the microscopic level exploiting crossed molecular beams.

2.
Chemphyschem ; 22(14): 1497-1504, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34004053

RESUMO

The chemical dynamics of the elementary reaction of ground state atomic silicon (Si; 3 P) with germane (GeH4 ; X1 A1 ) were unraveled in the gas phase under single collision condition at a collision energy of 11.8±0.3 kJ mol-1 exploiting the crossed molecular beams technique contemplated with electronic structure calculations. The reaction follows indirect scattering dynamics and is initiated through an initial barrierless insertion of the silicon atom into one of the four chemically equivalent germanium-hydrogen bonds forming a triplet collision complex (HSiGeH3 ; 3 i1). This intermediate underwent facile intersystem crossing (ISC) to the singlet surface (HSiGeH3 ; 1 i1). The latter isomerized via at least three hydrogen atom migrations involving exotic, hydrogen bridged reaction intermediates eventually leading to the H3 SiGeH isomer i5. This intermediate could undergo unimolecular decomposition yielding the dibridged butterfly-structured isomer 1 p1 (Si(µ-H2 )Ge) plus molecular hydrogen through a tight exit transition state. Alternatively, up to two subsequent hydrogen shifts to i6 and i7, followed by fragmentation of each of these intermediates, could also form 1 p1 (Si(µ-H2 )Ge) along with molecular hydrogen. The overall non-adiabatic reaction dynamics provide evidence on the existence of exotic dinuclear hydrides of main group XIV elements, whose carbon analog structures do not exist.

3.
Chemistry ; 26(60): 13584-13589, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32500564

RESUMO

The silene molecule (H2 SiCH2 ; X1 A1 ) has been synthesized under single collision conditions via the bimolecular gas phase reaction of ground state methylidyne radicals (CH) with silane (SiH4 ). Exploiting crossed molecular beams experiments augmented by high-level electronic structure calculations, the elementary reaction commenced on the doublet surface through a barrierless insertion of the methylidyne radical into a silicon-hydrogen bond forming the silylmethyl (CH2 SiH3 ; X2 A') complex followed by hydrogen migration to the methylsilyl radical (SiH2 CH3 ; X2 A'). Both silylmethyl and methylsilyl intermediates undergo unimolecular hydrogen loss to silene (H2 SiCH2 ; X1 A1 ). The exploration of the elementary reaction of methylidyne with silane delivers a unique view at the widely uncharted reaction dynamics and isomerization processes of the carbon-silicon system in the gas phase, which are noticeably different from those of the isovalent carbon system thus contributing to our knowledge on carbon silicon bond couplings at the molecular level.

4.
Chemphyschem ; 21(17): 1898-1904, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32596990

RESUMO

The methylgermylene species (HGeCH3 ; X1 A') has been synthesized via the bimolecular gas phase reaction of ground state methylidyne radicals (CH) with germane (GeH4 ) under single collision conditions in crossed molecular beams experiments. Augmented by electronic structure calculations, this elementary reaction was found to proceed through barrierless insertion of the methylidyne radical in one of the four germanium-hydrogen bonds on the doublet potential energy surface yielding the germylmethyl (CH2 GeH3 ; X2 A') collision complex. This insertion is followed by a hydrogen shift from germanium to carbon and unimolecular decomposition of the methylgermyl (GeH2 CH3 ; X2 A') intermediate by atomic hydrogen elimination leading to singlet methylgermylene (HGeCH3 ; X1 A'). Our investigation provides a glimpse at the largely unknown reaction dynamics and isomerization processes of the carbon-germanium system, which are quite distinct from those of the isovalent carbon system thus providing insights into the intriguing chemical bonding of organo germanium species on the most fundamental, microscopic level.

5.
J Phys Chem A ; 124(48): 9933-9941, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205982

RESUMO

This work presents quantum chemical G3(MP2,CC)//B2PLYPD3/6-311G(d,p) calculations of the potential energy surface for the indenyl (C9H7) + cyclopentadienyl (C5H5) reaction followed by unimolecular decomposition of the C14H11 radicals formed as the primary products, as well as the Rice-Ramsperger-Kassel-Marcus master equation (RRKM-ME) calculations to predict temperature- and pressure-dependent reaction rate constants and product branching ratios. The reaction begins with the barrierless recombination of indenyl and cyclopentadienyl forming a C14H12 molecule with a new C-C bond connecting two five-membered rings, which subsequently dissociates to C14H11 radicals by H losses. The primary products of the C9H7 + C5H5 → C14H11 + H reaction can directly decompose by another H loss to benzofulvalene, and this pathway is most favorable in terms of the entropy factor and hence is preferable at higher temperatures. Otherwise, the initial C14H11 isomers can undergo significant structural rearrangements before eliminating an H atom and producing phenanthrene, anthracene, or benzoazulenes, among which the formation of phenanthrene via the "spiran" pathway is clearly preferred. The calculated barriers along the computed favorable dissociation pathways are relatively low, in the ∼30-40 kcal/mol range, making the C14H11 radicals unstable at temperatures above 1000-1250 K at 1 atm. The results of RRKM-ME calculations show that, under typical combustion conditions, the decomposition of the C14H11 radicals predominantly leads to benzofulvalene. However, the latter can be rapidly converted to phenanthrene via H-assisted isomerization with the rate constant for the benzofulvalene + H → phenanthrene + H reaction being close to 10-11 cm3 molecule-1 s-1 at 1000-1500 K and 1 atm. The results provide further support for the hypothesis that recombination of two π radicals containing five-membered rings can lead to a growth of PAH with the formation of two fused six-membered rings, but the reaction mechanism may not be direct and is likely to involve two consecutive H atom losses leading to a fulvalene-like product, with subsequent H-assisted isomerization of the latter to a benzenoid PAH.

6.
J Phys Chem A ; 121(48): 9191-9200, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117681

RESUMO

Formation of fulvene and benzene through the reaction of cyclopentadienyl (C5H5) with methyl radical (CH3) and consequent dissociation of its primary C6H7 products has been studied using ab initio and theoretical kinetics calculations. The potential energies and geometries of all involved species have been computed at the CCSD(T)-F12/cc-pVTZ-f12//B2PLYPD3/aug-cc-pVDZ level theory. Multichannel/multiwell RRKM-Master Equation calculations have been utilized to produce phenomenological pressure- and temperature-dependent absolute and individual-channel rate constants for various reactions at the C6H8 and C6H7 potential energy surfaces. The kinetic scheme combining the primary and secondary reactions has been used to generate the overall rate constants for the production of fulvene and benzene and their branching ratios. Analyses of the kinetic data revealed that at low pressures (0.01 atm) benzene formation prevails, with branching ratios exceeding 60%, whereas at the highest pressure (100 atm) fulvene formation is prevalent, with the branching ratio of benzene being lower than 40%. At intermediate pressures (1 and 10 atm) the two product channels compete and fulvene formation is preferable at temperatures above 1600 K. The results demonstrate that a five-member ring can be efficiently transformed into an aromatic six-member ring by methylation and corroborate the potentially important role of the methyl radical in the mechanism of PAH growth where CH3 additions alternate with H abstractions and acetylene additions.

7.
Chem Sci ; 14(20): 5369-5378, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234886

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium and in meteorites such as Murchison and Allende and signify the missing link between resonantly stabilized free radicals and carbonaceous nanoparticles (soot particles, interstellar grains). However, the predicted lifetime of interstellar PAHs of some 108 years imply that PAHs should not exist in extraterrestrial environments suggesting that key mechanisms of their formation are elusive. Exploiting a microchemical reactor and coupling these data with computational fluid dynamics (CFD) simulations and kinetic modeling, we reveal through an isomer selective product detection that the reaction of the resonantly stabilized benzyl and the propargyl radicals synthesizes the simplest representative of PAHs - the 10π Hückel aromatic naphthalene (C10H8) molecule - via the novel Propargyl Addition-BenzAnnulation (PABA) mechanism. The gas-phase preparation of naphthalene affords a versatile concept of the reaction of combustion and astronomically abundant propargyl radicals with aromatic radicals carrying the radical center at the methylene moiety as a previously passed over source of aromatics in high temperature environments thus bringing us closer to an understanding of the aromatic universe we live in.

8.
Nat Commun ; 13(1): 786, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145103

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are prevalent in deep space and on Earth as products in combustion processes bearing direct relevance to energy efficiency and environmental remediation. Reactions between hydrocarbon radicals in particular have been invoked as critical molecular mass growth processes toward cyclization leading to these PAHs. However, the mechanism of the formation of PAHs through radical - radical reactions are largely elusive. Here, we report on a combined computational and experimental study of the benzyl (C7H7) radical self-reaction to phenanthrene and anthracene (C14H10) through unconventional, isomer-selective excited state dynamics. Whereas phenanthrene formation is initiated via a barrierless recombination of two benzyl radicals on the singlet ground state surface, formation of anthracene commences through an exotic transition state on the excited state triplet surface through cycloaddition. Our findings challenge conventional wisdom that PAH formation via radical-radical reactions solely operates on electronic ground state surfaces and open up a previously overlooked avenue for a more "rapid" synthesis of aromatic, multi-ringed structures via excited state dynamics in the gas phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA