Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 28(Pt 2): 609-617, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650573

RESUMO

X-SPEC is a high-flux spectroscopy beamline at the KIT (Karlsruhe Institute of Technology) Synchrotron for electron and X-ray spectroscopy featuring a wide photon energy range. The beamline is equipped with a permanent magnet undulator with two magnetic structures of different period lengths, a focusing variable-line-space plane-grating monochromator, a double-crystal monochromator and three Kirkpatrick-Baez mirror pairs. By selectively moving these elements in or out of the beam, X-SPEC is capable of covering an energy range from 70 eV up to 15 keV. The flux of the beamline is maximized by optimizing the magnetic design of the undulator, minimizing the number of optical elements and optimizing their parameters. The beam can be focused into two experimental stations while maintaining the same spot position throughout the entire energy range. The first experimental station is optimized for measuring solid samples under ultra-high-vacuum conditions, while the second experimental station allows in situ and operando studies under ambient conditions. Measurement techniques include X-ray absorption spectroscopy (XAS), extended X-ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X-ray PES (HAXPES), as well as X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS).

2.
ACS Appl Mater Interfaces ; 10(43): 37602-37608, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30272438

RESUMO

We present a detailed characterization of the chemical structure of the Cu(In,Ga)Se2 thin-film surface and the CdS/Cu(In,Ga)Se2 interface, both with and without a RbF post-deposition treatment (RbF-PDT). For this purpose, X-ray photoelectron and Auger electron spectroscopy, as well as synchrotron-based soft X-ray emission spectroscopy have been employed. Although some similarities with the reported impacts of light-element alkali PDT (i.e., NaF- and KF-PDT) are found, we observe some distinct differences, which might be the reason for the further improved conversion efficiency with heavy-element alkali PDT. In particular, we find that the RbF-PDT reduces, but not fully removes, the copper content at the absorber surface and does not induce a significant change in the Ga/(Ga + In) ratio. Additionally, we observe an increased amount of indium and gallium oxides at the surface of the treated absorber. These oxides are partly (in the case of indium) and completely (in the case of gallium) removed from the CdS/Cu(In,Ga)Se2 interface by the chemical bath deposition of the CdS buffer.

3.
ACS Appl Mater Interfaces ; 9(4): 3581-3589, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28058843

RESUMO

A NaF/KF postdeposition treatment (PDT) has recently been employed to achieve new record efficiencies of Cu(In,Ga)Se2 (CIGSe) thin film solar cells. We have used a combination of depth-dependent soft and hard X-ray photoelectron spectroscopy as well as soft X-ray absorption and emission spectroscopy to gain detailed insight into the chemical structure of the CIGSe surface and how it is changed by different PDTs. Alkali-free CIGSe, NaF-PDT CIGSe, and NaF/KF-PDT CIGSe absorbers grown by low-temperature coevaporation have been interrogated. We find that the alkali-free and NaF-PDT CIGSe surfaces both display the well-known Cu-poor CIGSe chemical surface structure. The NaF/KF-PDT, however, leads to the formation of bilayer structure in which a K-In-Se species covers the CIGSe compound that in composition is identical to the chalcopyrite structure of the alkali-free and NaF-PDT absorber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA