Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 25(10): 3334-3353, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31066121

RESUMO

Terrestrial ecosystems are an important sink for atmospheric carbon dioxide (CO2 ), sequestering ~30% of annual anthropogenic emissions and slowing the rise of atmospheric CO2 . However, the future direction and magnitude of the land sink is highly uncertain. We examined how historical and projected changes in climate, land use, and ecosystem disturbances affect the carbon balance of terrestrial ecosystems in California over the period 2001-2100. We modeled 32 unique scenarios, spanning 4 land use and 2 radiative forcing scenarios as simulated by four global climate models. Between 2001 and 2015, carbon storage in California's terrestrial ecosystems declined by -188.4 Tg C, with a mean annual flux ranging from a source of -89.8 Tg C/year to a sink of 60.1 Tg C/year. The large variability in the magnitude of the state's carbon source/sink was primarily attributable to interannual variability in weather and climate, which affected the rate of carbon uptake in vegetation and the rate of ecosystem respiration. Under nearly all future scenarios, carbon storage in terrestrial ecosystems was projected to decline, with an average loss of -9.4% (-432.3 Tg C) by the year 2100 from current stocks. However, uncertainty in the magnitude of carbon loss was high, with individual scenario projections ranging from -916.2 to 121.2 Tg C and was largely driven by differences in future climate conditions projected by climate models. Moving from a high to a low radiative forcing scenario reduced net ecosystem carbon loss by 21% and when combined with reductions in land-use change (i.e., moving from a high to a low land-use scenario), net carbon losses were reduced by 55% on average. However, reconciling large uncertainties associated with the effect of increasing atmospheric CO2 is needed to better constrain models used to establish baseline conditions from which ecosystem-based climate mitigation strategies can be evaluated.


Assuntos
Clima , Ecossistema , California , Dióxido de Carbono , Sequestro de Carbono
2.
Sci Total Environ ; 829: 154419, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35276172

RESUMO

Inland lakes face unprecedented pressures from climatic and anthropogenic stresses, causing their recession and desiccation globally. Climate change is increasingly blamed for such environmental degradation, but in many regions, direct anthropogenic pressures compound, and sometimes supersede, climatic factors. This study examined a human-environmental system - the terminal Hamun Lakes on the Iran-Afghanistan border - that embodies amplified challenges of inland waters. Satellite and climatic data from 1984 to 2019 were fused, which documented that the Hamun Lakes lost 89% of their surface area between 1999 and 2001 (3809 km2 versus 410 km2), coincident with a basin-wide, multi-year meteorological drought. The lakes continued to shrink afterwards and desiccated in 2012, despite the above-average precipitation in the upstream basin. Rapid growth in irrigated agricultural lands occurred in upstream Afghanistan in the recent decade, consuming water that otherwise would have fed the Hamun Lakes. Compounding upstream anthropogenic stressors, Iran began storing flood water that would have otherwise drained to the lakes, for urban and agricultural consumption in 2009. Results from a deep Learning model of Hamun Lakes' dynamics indicate that the average lakes' surface area from 2010 to 2019 would have been 2.5 times larger without increasing anthropogenic stresses across the basin. The Hamun Lakes' desiccation had major socio-environmental consequences, including loss of livelihood, out-migration, dust-storms, and loss of important species in the region.


Assuntos
Efeitos Antropogênicos , Lagos , Agricultura , Mudança Climática , Monitoramento Ambiental , Humanos , Água
3.
Sci Data ; 7(1): 194, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572035

RESUMO

Wildland fires have a multitude of ecological effects in forests, woodlands, and savannas across the globe. A major focus of past research has been on tree mortality from fire, as trees provide a vast range of biological services. We assembled a database of individual-tree records from prescribed fires and wildfires in the United States. The Fire and Tree Mortality (FTM) database includes records from 164,293 individual trees with records of fire injury (crown scorch, bole char, etc.), tree diameter, and either mortality or top-kill up to ten years post-fire. Data span 142 species and 62 genera, from 409 fires occurring from 1981-2016. Additional variables such as insect attack are included when available. The FTM database can be used to evaluate individual fire-caused mortality models for pre-fire planning and post-fire decision support, to develop improved models, and to explore general patterns of individual fire-induced tree death. The database can also be used to identify knowledge gaps that could be addressed in future research.


Assuntos
Incêndios , Agricultura Florestal , Florestas , Árvores , Bases de Dados como Assunto , Estados Unidos
4.
PLoS One ; 10(11): e0140226, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26529595

RESUMO

Balancing society's competing needs of development and conservation requires careful consideration of tradeoffs. Renewable energy development and biodiversity conservation are often considered beneficial environmental goals. The direct footprint and disturbance of renewable energy, however, can displace species' habitat and negatively impact populations and natural communities if sited without ecological consideration. Offsets have emerged as a potentially useful tool to mitigate residual impacts after trying to avoid, minimize, or restore affected sites. Yet the problem of efficiently designing a set of offset sites becomes increasingly complex where many species or many sites are involved. Spatial conservation prioritization tools are designed to handle this problem, but have seen little application to offset siting and analysis. To address this need we designed an offset siting support tool for the Desert Renewable Energy Conservation Plan (DRECP) of California, and present a case study of hypothetical impacts from solar development in the Western Mojave subsection. We compare two offset scenarios designed to mitigate a hypothetical 15,331 ha derived from proposed utility-scale solar energy development (USSED) projects. The first scenario prioritizes offsets based precisely on impacted features, while the second scenario offsets impacts to maximize biodiversity conservation gains in the region. The two methods only agree on 28% of their prioritized sites and differ in meeting species-specific offset goals. Differences between the two scenarios highlight the importance of clearly specifying choices and priorities for offset siting and mitigation in general. Similarly, the effects of background climate and land use change may lessen the durability or effectiveness of offsets if not considered. Our offset siting support tool was designed specifically for the DRECP area, but with minor code modification could work well in other offset analyses, and could provide continuing support for a potentially innovative mitigation solution to environmental impacts.


Assuntos
Conservação de Recursos Energéticos/métodos , Energia Solar , Biodiversidade , California , Clima Desértico , Ecossistema
5.
PeerJ ; 2: e690, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538868

RESUMO

Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.

6.
PLoS One ; 8(2): e56670, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451067

RESUMO

Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments.


Assuntos
Ecossistema , Recreação , Qualidade da Água , Conservação dos Recursos Naturais , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA