Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 510(7504): 268-72, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24776803

RESUMO

The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells.


Assuntos
Estresse do Retículo Endoplasmático , Células-Tronco Hematopoéticas/citologia , Resposta a Proteínas não Dobradas/fisiologia , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Xenoenxertos , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteína Fosfatase 1/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo
2.
Nat Commun ; 10(1): 1436, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926792

RESUMO

In embryonic stem cells, promoters of key lineage-specific differentiation genes are found in a bivalent state, having both activating H3K4me3 and repressive H3K27me3 histone marks, making them poised for transcription upon loss of H3K27me3. Whether cancer-initiating cells (C-ICs) have similar epigenetic mechanisms that prevent lineage commitment is unknown. Here we show that colorectal C-ICs (CC-ICs) are maintained in a stem-like state through a bivalent epigenetic mechanism. Disruption of the bivalent state through inhibition of the H3K27 methyltransferase EZH2, resulted in decreased self-renewal of patient-derived C-ICs. Epigenomic analyses revealed that the promoter of Indian Hedgehog (IHH), a canonical driver of normal colonocyte differentiation, exists in a bivalent chromatin state. Inhibition of EZH2 resulted in de-repression of IHH, decreased self-renewal, and increased sensitivity to chemotherapy in vivo. Our results reveal an epigenetic block to differentiation in CC-ICs and demonstrate the potential for epigenetic differentiation therapy of a solid tumour through EZH2 inhibition.


Assuntos
Autorrenovação Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas Hedgehog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Fluoruracila/farmacologia , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Piridonas/farmacologia
3.
Clin Cancer Res ; 24(9): 2116-2127, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29476017

RESUMO

Purpose: Cancer-initiating cells (C-IC) have been described in multiple cancer types, including colorectal cancer. C-ICs are defined by their capacity to self-renew, thereby driving tumor growth. C-ICs were initially thought to be static entities; however, recent studies have determined these cells to be dynamic and influenced by microenvironmental cues such as hypoxia. If hypoxia drives the formation of C-ICs, then therapeutic targeting of hypoxia could represent a novel means to target C-ICs.Experimental Design: Patient-derived colorectal cancer xenografts were treated with evofosfamide, a hypoxia-activated prodrug (HAP), in combination with 5-fluorouracil (5-FU) or chemoradiotherapy (5-FU and radiation; CRT). Treatment groups included both concurrent and sequential dosing regimens. Effects on the colorectal cancer-initiating cell (CC-IC) fraction were assessed by serial passage in vivo limiting dilution assays. FAZA-PET imaging was utilized as a noninvasive method to assess intratumoral hypoxia.Results: Hypoxia was sufficient to drive the formation of CC-ICs and colorectal cancer cells surviving conventional therapy were more hypoxic and C-IC-like. Using a novel approach to combination therapy, we show that sequential treatment with 5-FU or CRT followed by evofosfamide not only inhibits tumor growth of xenografts compared with 5-FU or CRT alone, but also significantly decreases the CC-IC fraction. Furthermore, noninvasive FAZA-PET hypoxia imaging was predictive of a tumor's response to evofosfamide.Conclusions: Our data demonstrate a novel means to target the CC-IC fraction by adding a HAP sequentially after conventional adjuvant therapy, as well as the use of FAZA-PET as a biomarker for hypoxia to identify tumors that will benefit most from this approach. Clin Cancer Res; 24(9); 2116-27. ©2018 AACR.


Assuntos
Neoplasias Colorretais/metabolismo , Hipóxia/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Nitroimidazóis/administração & dosagem , Mostardas de Fosforamida/administração & dosagem , Pró-Fármacos/administração & dosagem , Animais , Biomarcadores , Caspases/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiorradioterapia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Camundongos , Fenótipo , Tomografia por Emissão de Pósitrons , Padrão de Cuidado , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Stem Cell ; 14(3): 275-91, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24607403

RESUMO

Genetic analyses have shaped much of our understanding of cancer. However, it is becoming increasingly clear that cancer cells display features of normal tissue organization, where cancer stem cells (CSCs) can drive tumor growth. Although often considered as mutually exclusive models to describe tumor heterogeneity, we propose that the genetic and CSC models of cancer can be harmonized by considering the role of genetic diversity and nongenetic influences in contributing to tumor heterogeneity. We offer an approach to integrating CSCs and cancer genetic data that will guide the field in interpreting past observations and designing future studies.


Assuntos
Modelos Biológicos , Células-Tronco Neoplásicas/patologia , Animais , Epigênese Genética , Heterogeneidade Genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Stem Cell ; 14(1): 94-106, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24388174

RESUMO

The hematopoietic system sustains regeneration throughout life by balancing self-renewal and differentiation. To stay poised for mature blood production, hematopoietic stem cells (HSCs) maintain low-level expression of lineage-associated genes, a process termed lineage priming. Here, we modulated expression levels of Inhibitor of DNA binding (ID) proteins to ask whether lineage priming affects self-renewal of human HSCs. We found that lentiviral overexpression of ID proteins in cord blood HSCs biases myeloerythroid commitment at the expense of lymphoid differentiation. Conversely, reducing ID2 expression levels increases lymphoid potential. Mechanistically, ID2 inhibits the transcription factor E47 to attenuate B-lymphoid priming in HSCs and progenitors. Strikingly, ID2 overexpression also results in a 10-fold expansion of HSCs in serial limiting dilution assays, indicating that early lymphoid transcription factors antagonize human HSC self-renewal. The relationship between lineage priming and self-renewal can be exploited to increase expansion of transplantable human HSCs and points to broader implications for other stem cell populations.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas/citologia , Proteína 2 Inibidora de Diferenciação/metabolismo , Linfócitos/citologia , Animais , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Perfilação da Expressão Gênica , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Mieloides/citologia , Células Mieloides/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator 3 de Transcrição/genética , Fator 3 de Transcrição/metabolismo , Transplante Heterólogo
6.
Nat Med ; 20(1): 29-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24292392

RESUMO

Tumor recurrence following treatment remains a major clinical challenge. Evidence from xenograft models and human trials indicates selective enrichment of cancer-initiating cells (CICs) in tumors that survive therapy. Together with recent reports showing that CIC gene signatures influence patient survival, these studies predict that targeting self-renewal, the key 'stemness' property unique to CICs, may represent a new paradigm in cancer therapy. Here we demonstrate that tumor formation and, more specifically, human colorectal CIC function are dependent on the canonical self-renewal regulator BMI-1. Downregulation of BMI-1 inhibits the ability of colorectal CICs to self-renew, resulting in the abrogation of their tumorigenic potential. Treatment of primary colorectal cancer xenografts with a small-molecule BMI-1 inhibitor resulted in colorectal CIC loss with long-term and irreversible impairment of tumor growth. Targeting the BMI-1-related self-renewal machinery provides the basis for a new therapeutic approach in the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Compostos Heterocíclicos com 2 Anéis/farmacologia , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Tiazóis/farmacologia , Animais , Western Blotting , Bromodesoxiuridina , Linhagem Celular Tumoral , Citometria de Fluxo , Vetores Genéticos/genética , Compostos Heterocíclicos com 2 Anéis/uso terapêutico , Humanos , Luciferases , Camundongos Endogâmicos NOD , Camundongos SCID , Complexo Repressor Polycomb 1/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/genética , Tiazóis/uso terapêutico
7.
Science ; 339(6119): 543-8, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23239622

RESUMO

Intratumoral heterogeneity arises through the evolution of genetically diverse subclones during tumor progression. However, it remains unknown whether cells within single genetic clones are functionally equivalent. By combining DNA copy number alteration (CNA) profiling, sequencing, and lentiviral lineage tracking, we followed the repopulation dynamics of 150 single lentivirus-marked lineages from 10 human colorectal cancers through serial xenograft passages in mice. CNA and mutational analysis distinguished individual clones and showed that clones remained stable upon serial transplantation. Despite this stability, the proliferation, persistence, and chemotherapy tolerance of lentivirally marked lineages were variable within each clone. Chemotherapy promoted the dominance of previously minor or dormant lineages. Thus, apart from genetic diversity, tumor cells display inherent functional variability in tumor propagation potential, which contributes to both cancer growth and therapy tolerance.


Assuntos
Evolução Clonal/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Linhagem da Célula , Rastreamento de Células , Células Clonais , Neoplasias Colorretais/genética , Variações do Número de Cópias de DNA , Humanos , Lentivirus , Camundongos , Transplante de Neoplasias , Transcriptoma , Transdução Genética , Células Tumorais Cultivadas
8.
Cancer Cell ; 21(6): 777-92, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22698403

RESUMO

There is increasing evidence that some cancers are hierarchically organized, sustained by a relatively rare population of cancer-initiating cells (C-ICs). Although the capacity to initiate tumors upon serial transplantation is a hallmark of all C-ICs, little is known about the genes that control this process. Here, we establish that ID1 and ID3 function together to govern colon cancer-initiating cell (CC-IC) self-renewal through cell-cycle restriction driven by the cell-cycle inhibitor p21. Regulation of p21 by ID1 and ID3 is a central mechanism preventing the accumulation of excess DNA damage and subsequent functional exhaustion of CC-ICs. Additionally, silencing of ID1 and ID3 increases sensitivity of CC-ICs to the chemotherapeutic agent oxaliplatin, linking tumor initiation function with chemotherapy resistance.


Assuntos
Neoplasias do Colo/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteína 1 Inibidora de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/genética , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/farmacologia , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia Confocal , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Clin Cancer Res ; 16(12): 3113-20, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20530701

RESUMO

The cancer stem cell (CSC) or cancer-initiating cancer (C-IC) model has garnered considerable attention over the past several years since Dick and colleagues published a seminal report showing that a hierarchy exists among leukemic cells. In more recent years, a similar hierarchical organization, at the apex of which exists the CSC, has been identified in a variety of solid tumors. Human CSCs are defined by their ability to: (i) generate a xenograft that histologically resembles the parent tumor from which it was derived, (ii) be serially transplanted in a xenograft assay thereby showing the ability to self-renew (regenerate), and (iii) generate daughter cells that possess some proliferative capacity but are unable to initiate or maintain the cancer because they lack intrinsic regenerative potential. The emerging complexity of the CSC phenotype and function is at times daunting and has led to some confusion in the field. However, at its core, the CSC model is about identifying and characterizing the cancer cells that possess the greatest capacity to regenerate all aspects of the tumor. It is becoming clear that cancer cells evolve as a result of their ability to hijack normal self-renewal pathways, a process that can drive malignant transformation. Studying self-renewal in the context of cancer and CSC maintenance will lead to a better understanding of the mechanisms driving tumor growth. This review will address some of the main controversies in the CSC field and emphasize the importance of focusing first and foremost on the defining feature of CSCs: dysregulated self-renewal capacity.


Assuntos
Neoplasias/patologia , Animais , Proliferação de Células , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Desenvolvimento Embrionário , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos
10.
Semin Radiat Oncol ; 19(2): 71-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19249644

RESUMO

It has long been appreciated that significant functional and morphologic heterogeneity can exist within the individual cells that comprise a tumor. Increasing evidence indicates that many solid tumors are organized in a hierarchical manner in which tumor growth is driven by a small subset of cancer stem cells (CSCs) or tumor-initiating cells. Although these cells represent a small percentage of the overall tumor population, they are the only cells capable of initiating and driving tumor growth. Emerging evidence indicates that these cells are also resistant to chemotherapy and radiation therapy, which has led to much speculation and interest surrounding the potential clinical applicability of CSCs.


Assuntos
Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Animais , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação
11.
Curr Protoc Stem Cell Biol ; Chapter 3: Unit 3.1, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19016431

RESUMO

This unit describes protocols for working with colon cancer stem cells. To work with these cells one must start by generating single-cell suspensions from human colon cancer tissue. These cell suspensions are sorted using flow cytometry-assisted cell sorting to fractionate the cells into tumor-initiating and nontumor-initiating subsets. Once the cells have been fractionated, they must be functionally tested to determine tumor-forming capacity, the gold standard being the in vivo xenograft assay. Methods have also been developed to grow these cells in vitro in a sphere-forming assay. This unit will describe how to isolate and functionally test colon cancer stem cells, as well as provide advice on the potential challenges of the research.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/citologia , Esferoides Celulares/citologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA