RESUMO
Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.
Assuntos
Transdução de Sinais , Tromboplastina , Animais , Camundongos , Inflamação , Interferon-alfa , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Tromboplastina/genéticaRESUMO
Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood. Here, we show that human SAM-domain- and HD-domain-containing protein 1 (SAMHD1), one of the AGS-causing genes, functions as a single-stranded RNA (ssRNA) 3'exonuclease, the lack of which causes cellular RNA accumulation. Increased ssRNA in cells leads to dissolution of RNA-protein condensates, which sequester immunogenic double-stranded RNA (dsRNA). Release of sequestered dsRNA from condensates triggers activation of antiviral type I interferon via retinoic-acid-inducible gene I-like receptors. Our results establish SAMHD1 as a key regulator of cellular RNA homeostasis and demonstrate that buffering of immunogenic self RNA by condensates regulates innate immune responses.
Assuntos
Interferon Tipo I , RNA de Cadeia Dupla , Antivirais , Doenças Autoimunes do Sistema Nervoso , Exonucleases/genética , Humanos , Imunidade Inata/genética , Interferon Tipo I/genética , Malformações do Sistema Nervoso , RNA de Cadeia Dupla/genética , Proteína 1 com Domínio SAM e Domínio HD/genéticaRESUMO
C-terminal variants in CDC42 encoding cell division control protein 42 homolog underlie neonatal-onset cytopenia, autoinflammation, rash, and hemophagocytic lymphohistiocytosis (NOCARH). Pyrin inflammasome hyperactivation has been shown to contribute to disease pathophysiology. However, mortality of NOCARH patients remains high despite inflammasome-focused treatments. Here, we demonstrate in four NOCARH patients from three families that cell-intrinsic activation of type I interferon (IFN) is a previously unrecognized driver of autoinflammation in NOCARH. Our data show that aberrant innate immune activation is caused by sensing of cytosolic nucleic acids released from mitochondria, which exhibit disturbances in integrity and dynamics due to CDC42 dysfunction. In one of our patients, treatment with the Janus kinase inhibitor ruxolitinib led to complete remission, indicating that inhibition of type I IFN signaling may have an important role in the management of autoinflammation in patients with NOCARH.
Assuntos
Interferon Tipo I , Linfo-Histiocitose Hemofagocítica , Humanos , Recém-Nascido , Proteína cdc42 de Ligação ao GTP , Inflamassomos/genética , Linfo-Histiocitose Hemofagocítica/etiologia , Nitrilas , SíndromeRESUMO
PURPOSE OF REVIEW: To review recent scientific advances and therapeutic approaches in the expanding field of type I interferonopathies. Type I interferonopathies represent a genetically and phenotypically heterogenous group of disorders of the innate immune system caused by constitutive activation of antiviral type I interferon (IFN). Clinically, type I interferonopathies are characterized by autoinflammation and varying degrees of autoimmunity or immunodeficiency. The elucidation of the underlying genetic causes has revealed novel cell-intrinsic mechanisms that protect the organism against inappropriate immune recognition of self nucleic acids by cytosolic nucleic acid sensors. The type I IFN system is subject to a tight and complex regulation. Disturbances of its checks and balances can spark an unwanted immune response causing uncontrolled type I IFN signaling. Novel mechanistic insight into pathways that control the type I IFN system is providing opportunities for targeted therapeutic approaches by repurposing drugs such as Janus kinase inhibitors or reverse transcriptase inhibitors.
Assuntos
Doenças Autoimunes/tratamento farmacológico , Autoimunidade/imunologia , Imunossupressores/uso terapêutico , Interferon Tipo I/imunologia , Doenças Autoimunes/imunologia , HumanosRESUMO
OBJECTIVES: The HIV restriction factor, SAMHD1 (SAM domain and HD domain-containing protein 1), is a triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs). Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory disorder that shares phenotypic similarity with systemic lupus erythematosus, including activation of antiviral type 1 interferon (IFN). To further define the pathomechanisms underlying autoimmunity in AGS due to SAMHD1 mutations, we investigated the physiological properties of SAMHD1. METHODS: Primary patient fibroblasts were examined for dNTP levels, proliferation, senescence, cell cycle progression and DNA damage. Genome-wide transcriptional profiles were generated by RNA sequencing. Interaction of SAMHD1 with cyclin A was assessed by coimmunoprecipitation and fluorescence cross-correlation spectroscopy. Cell cycle-dependent phosphorylation of SAMHD1 was examined in synchronised HeLa cells and using recombinant SAMHD1. SAMHD1 was knocked down by RNA interference. RESULTS: We show that increased dNTP pools due to SAMHD1 deficiency cause genome instability in fibroblasts of patients with AGS. Constitutive DNA damage signalling is associated with cell cycle delay, cellular senescence, and upregulation of IFN-stimulated genes. SAMHD1 is phosphorylated by cyclin A/cyclin-dependent kinase 1 in a cell cycle-dependent manner, and its level fluctuates during the cell cycle, with the lowest levels observed in G1/S phase. Knockdown of SAMHD1 by RNA interference recapitulates activation of DNA damage signalling and type 1 IFN activation. CONCLUSIONS: SAMHD1 is required for genome integrity by maintaining balanced dNTP pools. dNTP imbalances due to SAMHD1 deficiency cause DNA damage, leading to intrinsic activation of IFN signalling. These findings establish a novel link between DNA damage signalling and innate immune activation in the pathogenesis of autoimmunity.
Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Autoimunidade/genética , Ciclina A/metabolismo , Fibroblastos/metabolismo , Instabilidade Genômica/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Malformações do Sistema Nervoso/genética , RNA Mensageiro/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Proteína Quinase CDC2 , Células Cultivadas , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA/genética , Dano ao DNA/imunologia , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Interferon Tipo I/imunologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Malformações do Sistema Nervoso/metabolismo , Fosforilação , Interferência de RNA , Proteína 1 com Domínio SAM e Domínio HD , Transdução de SinaisRESUMO
Mutations in TREX1, encoding three prime repair exonuclease 1, cause Aicardi-Goutières syndrome (AGS) 1, an autoinflammatory disease characterized by neurodegeneration and constitutive activation of the antiviral cytokine type I interferon. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from fibroblasts from two AGS patients with biallelic TREX1 mutations. These cell lines offer a unique resource to investigate disease processes in a cell-type specific manner.
Assuntos
Células-Tronco Pluripotentes Induzidas , Interferon Tipo I , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Exodesoxirribonucleases/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Mutação/genética , Interferon Tipo I/genética , Citocinas , AntiviraisRESUMO
Mutations in SAMHD1, encoding SAM and HD domain-containing protein 1, cause Aicardi-Goutières syndrome (AGS) 5, an infancy-onset autoinflammatory disease characterized by neurodegeneration and chronic activation of type I interferon. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from fibroblasts and peripheral blood mononuclear cells from three AGS patients with biallelic SAMHD1 mutations. These cell lines provide a valuable source to study disease mechanisms and to assess therapeutic molecules.
Assuntos
Células-Tronco Pluripotentes Induzidas , Interferon Tipo I , Proteínas Monoméricas de Ligação ao GTP , Humanos , Proteína 1 com Domínio SAM e Domínio HD/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação/genética , Interferon Tipo I/genética , Interferon Tipo I/metabolismoRESUMO
The monogenic type I interferonopathies comprise a heterogenous group of disorders of the innate immune system associated with constitutive activation of antiviral type I interferon (IFN). Despite a remarkable phenotypic diversity, type I interferonopathies are commonly characterized by autoinflammation and varying degrees of autoimmunity or immunodeficiency. The elucidation of the underlying genetic causes has revealed novel cell-intrinsic mechanisms that protect the organism against inappropriate immune recognition of self nucleic acids by cytosolic sensors such as cGAS or MDA5 through metabolizing or processing of intracellular DNA or RNA. What emerges from these findings is a more integrated picture of the different modes by which unabated type I IFN causes autoinflammation or drives autoimmunity.
Assuntos
Doenças Autoimunes/imunologia , Imunidade Inata , Síndromes de Imunodeficiência/imunologia , Inflamação , Interferon Tipo I/imunologia , Animais , Autoimunidade , Dano ao DNA , Humanos , Síndromes de Imunodeficiência/genética , Interferon Tipo I/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Ácidos Nucleicos/imunologia , Nucleotidiltransferases/metabolismoRESUMO
Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.
Assuntos
Citosol/metabolismo , DNA de Cadeia Simples/metabolismo , Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Células Cultivadas , DNA de Cadeia Simples/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferon Tipo I/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Interferência de RNA , Rad51 Recombinase/genética , Proteína de Replicação A/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Type I interferons (IFNs) play a central role in the immune defense against viral infections. Type I IFN signaling is activated by pattern recognition receptors upon sensing of viral nucleic acids and induces antiviral programs through modulation of innate and adaptive immune responses. Type I interferonopathies comprise a heterogenous group of genetically determined diseases that are characterized by inappropriate activation of type I IFN. While their phenotypic spectrum is broad, ranging from severe neurological impairment to mild cutaneous disease, systemic autoinflammation, and autoimmunity are commonly shared signs of type I interferonopathies. Although the mechanisms underlying various disease phenotypes associated with inappropriate type I IFN activation have yet to be fully elucidated, our current understanding of the molecular pathogenesis of type I interferonopathies has provided a set of candidate molecules that can be interrogated in search of targeted therapies.
Assuntos
Suscetibilidade a Doenças , Interferon Tipo I/metabolismo , Transdução de Sinais , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/terapia , Suscetibilidade a Doenças/etiologia , Suscetibilidade a Doenças/metabolismo , Doenças Hereditárias Autoinflamatórias/etiologia , Doenças Hereditárias Autoinflamatórias/metabolismo , Doenças Hereditárias Autoinflamatórias/terapia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/terapia , Receptores Imunológicos/metabolismoRESUMO
Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2-associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage-associated pathways in the initiation of autoimmunity.
Assuntos
Autoimunidade/genética , Reparo do DNA , Lúpus Eritematoso Sistêmico/genética , Dímeros de Pirimidina/metabolismo , Proliferação de Células , Células Cultivadas , Análise Mutacional de DNA , Expressão Gênica , Heterozigoto , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Dímeros de Pirimidina/genética , Ribonuclease H/genéticaRESUMO
SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.