Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Eng Online ; 22(1): 19, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855095

RESUMO

BACKGROUND: Pericardial access is necessary for the application of epicardial cardiac therapies including ablation catheters, pacing and defibrillation leads, and left atrial appendage closure systems. Pericardial access under fluoroscopic guidance is difficult in patients without pericardial effusions and may result in coronary artery damage, ventricular injury, or perforation with potentially life-threatening pericardial bleeding in up to 10% of cases. There is a clinical need for a pericardial access technique to safely deliver epicardial cardiac therapies. METHODS: In this paper, we describe the design and evaluation of a novel videoscope and tool kit to percutaneously access the pericardial space under direct visualization. Imaging is performed by a micro-CMOS camera with an automatic gain adjustment software to prevent image saturation. Imaging quality is quantified using known optical targets, while tool performance is evaluated in pediatric insufflation and pericardial access simulators. Device safety and efficacy is demonstrated by infant porcine preclinical studies (N = 6). RESULTS: The videoscope has a resolution of 400 × 400 pixels, imaging rate of 30 frames per second, and fits within the lumen of a 14G needle. The tool can resolve features smaller than 39.4 µm, achieves a magnification of 24x, and has a maximum of 3.5% distortion within the field of view. Successful pericardial access was achieved in pediatric simulators and acute in vivo animal studies. During in vivo testing, it took the electrophysiologist an average of 66.83 ± 32.86 s to insert the pericardial access tool into the thoracic space and visualize the heart. After visualizing the heart, it took an average of 136.67 ± 80.63 s to access the pericardial space under direct visualization. The total time to pericardial access measured from needle insertion was 6.7 × quicker than pericardial access using alternative direct visualization techniques. There was no incidence of ventricular perforation. CONCLUSIONS: Percutaneous pericardial access under direct visualization is a promising technique to access the pericardial space without complications in simulated and in vivo animal models.


Assuntos
Ablação por Cateter , Pericárdio , Animais , Suínos , Vasos Coronários , Imagem de Difusão por Ressonância Magnética , Fluoroscopia
2.
J Opt Soc Am A Opt Image Sci Vis ; 39(4): 655-661, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471389

RESUMO

Point clouds have been widely used due to their information being richer than images. Fringe projection profilometry (FPP) is one of the camera-based point cloud acquisition techniques that is being developed as a vision system for robotic surgery. For semi-autonomous robotic suturing, fluorescent fiducials were previously used on a target tissue as suture landmarks. This not only increases system complexity but also imposes safety concerns. To address these problems, we propose a numerical landmark localization algorithm based on a convolutional neural network (CNN) and a conditional random field (CRF). A CNN is applied to regress landmark heatmaps from the four-channel image data generated by the FPP. A CRF leveraging both local and global shape constraints is developed to better tune the landmark coordinates, reject extra landmarks, and recover missing landmarks. The robustness of the proposed method is demonstrated through ex vivo porcine intestine landmark localization experiments.


Assuntos
Algoritmos , Redes Neurais de Computação , Animais , Suínos
3.
Sensors (Basel) ; 22(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35891016

RESUMO

Developing image-guided robotic systems requires access to flexible, open-source software. For image guidance, the open-source medical imaging platform 3D Slicer is one of the most adopted tools that can be used for research and prototyping. Similarly, for robotics, the open-source middleware suite robot operating system (ROS) is the standard development framework. In the past, there have been several "ad hoc" attempts made to bridge both tools; however, they are all reliant on middleware and custom interfaces. Additionally, none of these attempts have been successful in bridging access to the full suite of tools provided by ROS or 3D Slicer. Therefore, in this paper, we present the SlicerROS2 module, which was designed for the direct use of ROS2 packages and libraries within 3D Slicer. The module was developed to enable real-time visualization of robots, accommodate different robot configurations, and facilitate data transfer in both directions (between ROS and Slicer). We demonstrate the system on multiple robots with different configurations, evaluate the system performance and discuss an image-guided robotic intervention that can be prototyped with this module. This module can serve as a starting point for clinical system development that reduces the need for custom interfaces and time-intensive platform setup.


Assuntos
Robótica , Diagnóstico por Imagem , Espécies Reativas de Oxigênio , Software
4.
J Cardiovasc Magn Reson ; 23(1): 99, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34482836

RESUMO

BACKGROUND: Coarctation of the aorta (CoA) is associated with decreased exercise capacity despite successful repair. Altered flow patterns have been identified due to abnormal aortic arch geometry. Our previous work demonstrated aorta size mismatch to be associated with exercise intolerance in this population. In this study, we studied aortic flow patterns during simulations of exercise in repaired CoA using 4D flow cardiovascular magnetic resonance (CMR) using aortic replicas connected to an in vitro flow pump and correlated findings with exercise stress test results to identify biomarkers of exercise intolerance. METHODS: Patients with CoA repair were retrospectively analyzed after CMR and exercise stress test. Each aorta was manually segmented and 3D printed. Pressure gradient measurements from ascending aorta (AAo) to descending aorta (DAo) and 4D flow CMR were performed during simulations of rest and exercise using a mock circulatory flow loop. Changes in wall shear stress (WSS) and secondary flow formation (vorticity and helicity) from rest to exercise were quantified, as well as estimated DAo Reynolds number. Parameters were correlated with percent predicted peak oxygen consumption (VO2max) and aorta size mismatch (DAAo/DDAo). RESULTS: Fifteen patients were identified (VO2max 47 to 126% predicted). Pressure gradient did not correlate with VO2max at rest or exercise. VO2max correlated positively with the change in peak vorticity (R = 0.55, p = 0.03), peak helicity (R = 0.54, p = 0.04), peak WSS in the AAo (R = 0.68, p = 0.005) and negatively with peak WSS in the DAo (R = - 0.57, p = 0.03) from rest to exercise. DAAo/DDAo correlated strongly with change in vorticity (R = - 0.38, p = 0.01), helicity (R = - 0.66, p = 0.007), and WSS in the AAo (R = - 0.73, p = 0.002) and DAo (R = 0.58, p = 0.02). Estimated DAo Reynolds number negatively correlated with VO2max for exercise (R = - 0.59, p = 0.02), but not rest (R = - 0.28, p = 0.31). Visualization of streamline patterns demonstrated more secondary flow formation in aortic arches with better exercise capacity, larger DAo, and lower Reynolds number. CONCLUSIONS: There are important associations between secondary flow characteristics and exercise capacity in repaired CoA that are not captured by traditional pressure gradient, likely due to increased turbulence and inefficient flow. These 4D flow CMR parameters are a target of investigation to identify optimal aortic arch geometry and improve long term clinical outcomes after CoA repair.


Assuntos
Coartação Aórtica , Aorta , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Coartação Aórtica/diagnóstico por imagem , Coartação Aórtica/cirurgia , Velocidade do Fluxo Sanguíneo , Hemodinâmica , Humanos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Estudos Retrospectivos
5.
Surg Innov ; 28(2): 208-213, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33980097

RESUMO

As the scope and scale of the COVID-19 pandemic became clear in early March of 2020, the faculty of the Malone Center engaged in several projects aimed at addressing both immediate and long-term implications of COVID-19. In this article, we briefly outline the processes that we engaged in to identify areas of need, the projects that emerged, and the results of those projects. As we write, some of these projects have reached a natural termination point, whereas others continue. We identify some of the factors that led to projects that moved to implementation, as well as factors that led projects to fail to progress or to be abandoned.


Assuntos
Engenharia Biomédica , COVID-19/prevenção & controle , Engenharia Biomédica/instrumentação , Engenharia Biomédica/métodos , Engenharia Biomédica/organização & administração , Bases de Dados Factuais , Humanos , Nebraska , Pandemias , SARS-CoV-2
6.
Sensors (Basel) ; 20(2)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940877

RESUMO

Deep anterior lamellar keratoplasty (DALK) is a highly challenging procedure for cornea transplant that involves removing the corneal layers above Descemet's membrane (DM). This is achieved by a "big bubble" technique where a needle is inserted into the stroma of the cornea down to DM and the injection of either air or liquid. DALK has important advantages over penetrating keratoplasty (PK) including lower rejection rate, less endothelial cell loss, and increased graft survival. In this paper, we successfully designed and evaluated the optical coherence tomography (OCT) distal sensor integrated needle for a precise big bubble technique. We successfully used this sensor for micro-control of a robotic DALK device termed AUTO-DALK for autonomous big bubble needle insertion. The OCT distal sensor was integrated inside a 25-gauge needle, which was used for pneumo-dissection. The AUTO-DALK device is built on a manual trephine platform which includes a vacuum ring to fix the device on the eye and add a needle driver at an angle of 60 degrees from vertical. During the test on five porcine eyes with a target depth of 90%, the measured insertion depth as a percentage of cornea thickness for the AUTO-DALK device was 90 . 05 % ± 2 . 33 % without any perforation compared to 79 . 16 % ± 5 . 68 % for unassisted free-hand insertion and 86 . 20 % ± 5 . 31 % for assisted free-hand insertion. The result showed a higher precision and consistency of the needle placement with AUTO-DALK, which could lead to better visual outcomes and fewer complications.


Assuntos
Segmento Anterior do Olho/diagnóstico por imagem , Segmento Anterior do Olho/cirurgia , Transplante de Córnea , Tomografia de Coerência Óptica , Animais , Bovinos , Córnea/anatomia & histologia , Estudos de Viabilidade , Processamento de Imagem Assistida por Computador
7.
J Cardiovasc Electrophysiol ; 28(9): 1098-1104, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28569424

RESUMO

INTRODUCTION: Our group has demonstrated the feasibility of percutaneous pericardial ICD lead placement in a piglet model utilizing direct visualization from a lateral thoracoscopic approach. Development of a novel delivery tool that incorporates visualization allows for the procedure to be performed with a 1 cm subxiphoid incision. METHODS AND RESULTS: A 1 cm incision is made in the subxiphoid area and a novel self-anchoring delivery tool is inserted. A rigid thoracoscope and needle are inserted into two crossed working channels of the tool. After needle visualization, pericardial needle access, followed by sheath access is obtained. A modified side-biting ICD lead is inserted and fixated to the ventricular epicardial surface. The lead is connected to an ICD generator and lead testing followed by defibrillation threshold testing (DFT) is performed. Single-incision ICD lead placement was performed in 6 piglets without acute complications. Median time from subxiphoid incision to DFT testing was 64 minutes; median time from thoracoscope insertion to lead fixation was 16.5 minutes (range 9-30). All had adequate ventricular sensing and pacing at implant and underwent successful defibrillation (range 3-5 J). Survival period ranged from 1 to 16 weeks. Two piglets had survival periods of 12 and 16 weeks with mean weight gain of 7 kg; both had successful repeat DFT at 10 J. All survival animals had stable lead impedances and R-wave amplitudes throughout the survival period. CONCLUSION: Percutaneous pericardial placement of an ICD lead using our novel access tool can be safely performed through a 1 cm incision without complications.


Assuntos
Desfibriladores Implantáveis , Cardioversão Elétrica/instrumentação , Cardiopatias Congênitas/terapia , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Pericárdio , Suínos
8.
BMC Med Educ ; 17(1): 54, 2017 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-28284205

RESUMO

BACKGROUND: Congenital heart disease (CHD) is the most common human birth defect, and clinicians need to understand the anatomy to effectively care for patients with CHD. However, standard two-dimensional (2D) display methods do not adequately carry the critical spatial information to reflect CHD anatomy. Three-dimensional (3D) models may be useful in improving the understanding of CHD, without requiring a mastery of cardiac imaging. The study aimed to evaluate the impact of 3D models on how pediatric residents understand and learn about tetralogy of Fallot following a teaching session. METHODS: Pediatric residents rotating through an inpatient Cardiology rotation were recruited. The sessions were randomized into using either conventional 2D drawings of tetralogy of Fallot or physical 3D models printed from 3D cardiac imaging data sets (cardiac MR, CT, and 3D echocardiogram). Knowledge acquisition was measured by comparing pre-session and post-session knowledge test scores. Learner satisfaction and self-efficacy ratings were measured with questionnaires filled out by the residents after the teaching sessions. Comparisons between the test scores, learner satisfaction and self-efficacy questionnaires for the two groups were assessed with paired t-test. RESULTS: Thirty-five pediatric residents enrolled into the study, with no significant differences in background characteristics, including previous clinical exposure to tetralogy of Fallot. The 2D image group (n = 17) and 3D model group (n = 18) demonstrated similar knowledge acquisition in post-test scores. Residents who were taught with 3D models gave a higher composite learner satisfaction scores (P = 0.03). The 3D model group also had higher self-efficacy aggregate scores, but the difference was not statistically significant (P = 0.39). CONCLUSION: Physical 3D models enhance resident education around the topic of tetralogy of Fallot by improving learner satisfaction. Future studies should examine the impact of models on teaching CHD that are more complex and elaborate.


Assuntos
Educação Médica/métodos , Cardiopatias Congênitas/patologia , Modelos Anatômicos , Impressão Tridimensional , Tetralogia de Fallot/patologia , Ecocardiografia Tridimensional , Coração/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico , Humanos , Imageamento por Ressonância Magnética , Inquéritos e Questionários , Ensino , Tetralogia de Fallot/diagnóstico , Tetralogia de Fallot/diagnóstico por imagem , Tomografia Computadorizada por Raios X
9.
Chin Opt Lett ; 15(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29449863

RESUMO

An endoscopic imaging system using a plenoptic technique to reconstruct 3-D information is demonstrated and analyzed in this Letter. The proposed setup integrates a clinical surgical endoscope with a plenoptic camera to achieve a depth accuracy error of about 1 mm and a precision error of about 2 mm, within a 25 mm × 25 mm field of view, operating at 11 frames per second.

10.
Radiology ; 270(2): 556-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24471393

RESUMO

PURPOSE: To prospectively compare image quality with use of a two-channel solid reusable phased-array endorectal receiver coil (SPAC) with that of the single-channel inflatable endorectal balloon coil currently in widespread use for 1.5-T magnetic resonance (MR) imaging of the prostate. MATERIALS AND METHODS: Institutional review board approval and informed consent were obtained. Multiparametric prostate MR imaging at 1.5 T was performed in patients who were suspected of having cancer. Thirty consecutive patients were included (mean age, 66.1 years; range, 49-76 years). The first 15 patients were imaged by using a balloon coil and an eight-channel external array, and the remaining 15 were imaged with a SPAC alone. One patient was imaged with both techniques. Axial T2-weighted images acquired at both standard and high spatial resolution were used to compare image quality between coils. Qualitative assessments of image quality were made separately by three radiologists. Signal-to-noise ratio (SNR) profiles were determined on a pixel-by-pixel basis in a 1-cm central band in the prostate by using T1-weighted axial images at the apex, midgland, and base. Interrater reliability was determined by using a two-way intraclass correlation coefficient, qualitative scores were compared by using the Student t test for independent samples, and SNR profiles were plotted by using a Biot-Savart curve approximation. RESULTS: SNR of the SPAC was significantly better compared with that of the balloon coil at distances up to 3.0 cm at the apex and 3.5 cm at the base and midgland (P < .001). There was a 7% improvement in SNR at the mean maximal anteroposterior prostate dimension in this cohort and a 96% improvement at half this distance. At both standard and high spatial resolution, significant improvements in overall image quality (P = .015 and P < .001, respectively), visibility of the anterior gland (P = .009 and P < .001, respectively), and noise (P < .001 and P < .001, respectively) were seen when the SPAC was used. Interrater reliability was 0.536 (95% confidence interval: 0.461, 0.603). CONCLUSION: Both SNR and image quality were significantly improved with use of the SPAC at 1.5 T compared with use of the single-channel inflatable endorectal balloon coil.


Assuntos
Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Neoplasias da Próstata/diagnóstico , Idoso , Desenho de Equipamento , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Razão Sinal-Ruído
11.
Surg Endosc ; 28(6): 1993-2000, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24380997

RESUMO

BACKGROUND: Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers. METHODS: A hand-tracking system (Kinect™-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks. RESULTS: da Vinci had the lowest latency of 89 ms, followed by Mantis with 374 ms and 3Gear with 576 ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49 mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7 mm compared with 0.5 mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72 mm compared with Mantis's 1.61 mm and 3Gear's 2.41 mm (p value 0.00078). CONCLUSIONS: Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could become a reality with some technical improvements.


Assuntos
Robótica/instrumentação , Cirurgia Assistida por Computador/instrumentação , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Tempo de Reação
12.
IEEE Robot Autom Lett ; 9(7): 6178-6185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948904

RESUMO

The evolution of magnetically actuated millirobots gives rise to unique teleoperation challenges due to their non-traditional kinematic and dynamic architectures, as well as their frequent use of suboptimal imaging modalities. Recent investigations into haptic interfaces for millirobots have shown promise but lack the clinically motivated task scenarios necessary to justify future development. In this work, we investigate the utility of haptic feedback on bilateral teleoperation of a magnetically actuated millirobot in visually deficient conditions. We conducted an N=23 user study in an aneurysm coiling inspired procedure, which required participants to navigate the robot through a maze in near total darkness to manipulate beads to a target under simulated fluoroscopy. We hypothesized that users will be better able to complete the telemanipulation task with haptic feedback while reducing excess forces on their surroundings compared to the no feedback conditions. Our results showed an over 40% improvement in participants' bead scoring, a nearly 10% reduction in mean force, and 13% reduction in maximum force with haptic feedback, as well as significant improvements in other metrics. Results highlight that benefits of haptic feedback are retained when haptic feedback is removed. These findings suggest that haptic feedback has the potential to significantly improve millirobot telemanipulation and control in traditionally vision deficient tasks.

13.
Micromachines (Basel) ; 15(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38930758

RESUMO

Partial-thickness corneal transplants using a deep anterior lamellar keratoplasty (DALK) approach has demonstrated better patient outcomes than a full-thickness cornea transplant. However, despite better clinical outcomes from the DALK procedure, adoption of the technique has been limited because the accurate insertion of the needle into the deep stroma remains technically challenging. In this work, we present a novel hands-free eye mountable robot for automatic needle placement in the cornea, AutoDALK, that has the potential to simplify this critical step in the DALK procedure. The system integrates dual light-weight linear piezo motors, an OCT A-scan distance sensor, and a vacuum trephine-inspired design to enable the safe, consistent, and controllable insertion of a needle into the cornea for the pneumodissection of the anterior cornea from the deep posterior cornea and Descemet's membrane. AutoDALK was designed with feedback from expert corneal surgeons and performance was evaluated by finite element analysis simulation, benchtop testing, and ex vivo experiments to demonstrate the feasibility of the system for clinical applications. The mean open-loop positional deviation was 9.39 µm, while the system repeatability and accuracy were 39.48 µm and 43.18 µm, respectively. The maximum combined thrust of the system was found to be 1.72 N, which exceeds the clinical penetration force of the cornea. In a head-to-head ex vivo comparison against an expert surgeon using a freehand approach, AutoDALK achieved more consistent needle depth, which resulted in fewer perforations of Descemet's membrane and significantly deeper pneumodissection of the stromal tissue. The results of this study indicate that robotic needle insertion has the potential to simplify the most challenging task of the DALK procedure, enable more consistent surgical outcomes for patients, and standardize partial-thickness corneal transplants as the gold standard of care if demonstrated to be more safe and more effective than penetrating keratoplasty.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38482160

RESUMO

A variety of emerging applications, particularly those in medical and soft robotics fields, are predicated on the ability to fabricate long, flexible meso/microfluidic tubing with high customization. To address this need, here we present a hybrid additive manufacturing (or "three-dimensional (3D) printing") strategy that involves three key steps: (i) using the "Vat Photopolymerization (VPP) technique, "Liquid-Crystal Display (LCD)" 3D printing to print a bulk microfluidic device with three inlets and three concentric outlets; (ii) using "Two-Photon Direct Laser Writing (DLW)" to 3D microprint a coaxial nozzle directly atop the concentric outlets of the bulk microdevice, and then (iii) extruding paraffin oil and a liquid-phase photocurable resin through the coaxial nozzle and into a polydimethylsiloxane (PDMS) channel for UV exposure, ultimately producing the desired tubing. In addition to fabricating the resulting tubing-composed of polymerized photomaterial-at arbitrary lengths (e.g., > 10 cm), the distinct input pressures can be adjusted to tune the inner diameter (ID) and outer diameter (OD) of the fabricated tubing. For example, experimental results revealed that increasing the driving pressure of the liquid-phase photomaterial from 50 kPa to 100 kPa led to fluidic tubing with IDs and ODs of 291±99 µm and 546±76 µm up to 741±31 µm and 888±39 µm, respectively. Furthermore, preliminary results for DLW-printing a microfluidic "M" structure directly atop the tubing suggest that the tubing could be used for "ex situ DLW (esDLW)" fabrication, which would further enhance the utility of the tubing.

15.
Eur J Cardiothorac Surg ; 65(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38180888

RESUMO

OBJECTIVES: The 2 opposing inflows and 2 outflows in a total cavopulmonary connection make mechanical circulatory support (MCS) extremely challenging. We have previously reported a novel convergent cavopulmonary connection (CCPC) Fontan design that improves baseline characteristics and provides a single inflow and outflow, thus simplifying MCS. This study aims to assess the feasibility of MCS of this novel configuration using axial flow pumps in an in vitro benchtop model. METHODS: Three-dimensional segmentations of 12 single-ventricle patients (body surface area 0.5-1.75 m2) were generated from cardiovascular magnetic resonance images. The CCPC models were designed by connecting the inferior vena cava and superior vena cava to a shared conduit ascending to the pulmonary arteries, optimized in silico. The 12 total cavopulmonary connection and their corresponding CCPC models underwent in vitro benchtop characterization. Two MCS devices were used, the Impella RP® and the PediPump. RESULTS: MCS successfully and symmetrically reduced the pressure in both vena cavae by >20 mmHg. The devices improved the hepatic flow distribution balance of all CCPC models (Impella RP®P = 0.045, PediPump P = 0.055). CONCLUSIONS: The CCPC Fontan design provides a feasible MCS solution for a failing Fontan by balancing hepatic flow distribution and symmetrically decompressing the central venous pressure. Cardiac index may also improve with MCS. Additional studies are needed to evaluate this concept for managing Fontan failure.


Assuntos
Técnica de Fontan , Cardiopatias Congênitas , Humanos , Técnica de Fontan/métodos , Veia Cava Superior/cirurgia , Artéria Pulmonar/cirurgia , Veia Cava Inferior/cirurgia , Pulmão/cirurgia , Modelos Cardiovasculares , Hemodinâmica , Cardiopatias Congênitas/cirurgia
16.
IEEE Robot Autom Lett ; 9(2): 1166-1173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38292408

RESUMO

Head and neck cancers are the seventh most common cancers worldwide, with squamous cell carcinoma being the most prevalent histologic subtype. Surgical resection is a primary treatment modality for many patients with head and neck squamous cell carcinoma, and accurately identifying tumor boundaries and ensuring sufficient resection margins are critical for optimizing oncologic outcomes. This study presents an innovative autonomous system for tumor resection (ASTR) and conducts a feasibility study by performing supervised autonomous midline partial glossectomy for pseudotumor with millimeter accuracy. The proposed ASTR system consists of a dual-camera vision system, an electrosurgical instrument, a newly developed vacuum grasping instrument, two 6-DOF manipulators, and a novel autonomous control system. The letter introduces an ontology-based research framework for creating and implementing a complex autonomous surgical workflow, using the glossectomy as a case study. Porcine tongue tissues are used in this study, and marked using color inks and near-infrared fluorescent (NIRF) markers to indicate the pseudotumor. ASTR actively monitors the NIRF markers and gathers spatial and color data from the samples, enabling planning and execution of robot trajectories in accordance with the proposed glossectomy workflow. The system successfully performs six consecutive supervised autonomous pseudotumor resections on porcine specimens. The average surface and depth resection errors measure 0.73±0.60 mm and 1.89±0.54 mm, respectively, with no positive tumor margins detected in any of the six resections. The resection accuracy is demonstrated to be on par with manual pseudotumor glossectomy performed by an experienced otolaryngologist.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38516341

RESUMO

Among the numerous additive manufacturing or "three-dimensional (3D) printing" techniques, two-photon Direct Laser Writing (DLW) is distinctively suited for applications that demand high geometric versatility with micron-to-submicron-scale feature resolutions. Recently, "ex situ DLW (esDLW)" has emerged as a powerful approach for printing 3D microfluidic structures directly atop meso/macroscale fluidic tubing that can be manipulated by hand; however, difficulties in creating custom esDLW-compatible multilumen tubing at such scales has hindered progress. To address this impediment, here we introduce a novel methodology for fabricating submillimeter multilumen tubing for esDLW 3D printing. Preliminary fabrication results demonstrate the utility of the presented strategy for resolving 743 µm-in-diameter tubing with three lumens-each with an inner diameter (ID) of 80 µm. Experimental results not only revealed independent flow of discrete fluorescently labelled fluids through each of the three lumens, but also effective esDLW-printing of a demonstrative 3D "MEMS" microstructure atop the tubing. These results suggest that the presented approach could offer a promising pathway to enable geometrically sophisticated microfluidic systems to be 3D printed with input and/or output ports fully sealed to multiple, distinct lumens of fluidic tubing for emerging applications in fields ranging from drug delivery and medical diagnostics to soft surgical robotics.

18.
Biomed Opt Express ; 15(4): 2543-2560, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633079

RESUMO

Anastomosis is a common and critical part of reconstructive procedures within gastrointestinal, urologic, and gynecologic surgery. The use of autonomous surgical robots such as the smart tissue autonomous robot (STAR) system demonstrates an improved efficiency and consistency of the laparoscopic small bowel anastomosis over the current da Vinci surgical system. However, the STAR workflow requires auxiliary manual monitoring during the suturing procedure to avoid missed or wrong stitches. To eliminate this monitoring task from the operators, we integrated an optical coherence tomography (OCT) fiber sensor with the suture tool and developed an automatic tissue classification algorithm for detecting missed or wrong stitches in real time. The classification results were updated and sent to the control loop of STAR robot in real time. The suture tool was guided to approach the object by a dual-camera system. If the tissue inside the tool jaw was inconsistent with the desired suture pattern, a warning message would be generated. The proposed hybrid multilayer perceptron dual-channel convolutional neural network (MLP-DC-CNN) classification platform can automatically classify eight different abdominal tissue types that require different suture strategies for anastomosis. In MLP, numerous handcrafted features (∼1955) were utilized including optical properties and morphological features of one-dimensional (1D) OCT A-line signals. In DC-CNN, intensity-based features and depth-resolved tissues' attenuation coefficients were fully exploited. A decision fusion technique was applied to leverage the information collected from both classifiers to further increase the accuracy. The algorithm was evaluated on 69,773 testing A-line data. The results showed that our model can classify the 1D OCT signals of small bowels in real time with an accuracy of 90.06%, a precision of 88.34%, and a sensitivity of 87.29%, respectively. The refresh rate of the displayed A-line signals was set as 300 Hz, the maximum sensing depth of the fiber was 3.6 mm, and the running time of the image processing algorithm was ∼1.56 s for 1,024 A-lines. The proposed fully automated tissue sensing model outperformed the single classifier of CNN, MLP, or SVM with optimized architectures, showing the complementarity of different feature sets and network architectures in classifying intestinal OCT A-line signals. It can potentially reduce the manual involvement of robotic laparoscopic surgery, which is a crucial step towards a fully autonomous STAR system.

19.
JTCVS Open ; 18: 209-220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38690440

RESUMO

Objectives: The complexity of aortic arch reconstruction due to diverse 3-dimensional geometrical abnormalities is a major challenge. This study introduces 3-dimensional printed tissue-engineered vascular grafts, which can fit patient-specific dimensions, optimize hemodynamics, exhibit antithrombotic and anti-infective properties, and accommodate growth. Methods: We procured cardiac magnetic resonance imaging with 4-dimensional flow for native porcine anatomy (n = 10), from which we designed tissue-engineered vascular grafts for the distal aortic arch, 4 weeks before surgery. An optimal shape of the curved vascular graft was designed using computer-aided design informed by computational fluid dynamics analysis. Grafts were manufactured and implanted into the distal aortic arch of porcine models, and postoperative cardiac magnetic resonance imaging data were collected. Pre- and postimplant hemodynamic data and histology were analyzed. Results: Postoperative magnetic resonance imaging of all pigs with 1:1 ratio of polycaprolactone and poly-L-lactide-co-ε-caprolactone demonstrated no specific dilatation or stenosis of the graft, revealing a positive growth trend in the graft area from the day after surgery to 3 months later, with maintaining a similar shape. The peak wall shear stress of the polycaprolactone/poly-L-lactide-co-ε-caprolactone graft portion did not change significantly between the day after surgery and 3 months later. Immunohistochemistry showed endothelization and smooth muscle layer formation without calcification of the polycaprolactone/poly-L-lactide-co-ε-caprolactone graft. Conclusions: Our patient-specific polycaprolactone/poly-L-lactide-co-ε-caprolactone tissue-engineered vascular grafts demonstrated optimal anatomical fit maintaining ideal hemodynamics and neotissue formation in a porcine model. This study provides a proof of concept of patient-specific tissue-engineered vascular grafts for aortic arch reconstruction.

20.
Int J Comput Assist Radiol Surg ; 18(9): 1547-1557, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37486544

RESUMO

PURPOSE: During minimally invasive surgery, surgeons maneuver tools through complex anatomies, which is difficult without the ability to control the position of the tools inside the body. A potential solution for a substantial portion of these procedures is the efficient design and control of a pneumatically actuated soft robot system. METHODS: We designed and evaluated a system to control a steerable catheter tip. A macroscale 3D printed catheter tip was designed to have two separately pressurized channels to induce bending in two directions. A motorized hand controller was developed to allow users to control the bending angle while manually inserting the steerable tip. Preliminary characterization of two catheter tip prototypes was performed and used to map desired angle inputs into pressure commands. RESULTS: The integrated robotic system allowed both a novice and a skilled surgeon to position the steerable catheter tip at the location of cylindrical targets with sub-millimeter accuracy. The novice was able to reach each target within ten seconds and the skilled surgeon within five seconds on average. CONCLUSION: This soft robotic system enables its user to simultaneously insert and bend the pneumatically actuated catheter tip with high accuracy and in a short amount of time. These results show promise concerning the development of a soft robotic system that can improve outcomes in minimally invasive interventions.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Desenho de Equipamento , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Catéteres , Procedimentos Cirúrgicos Robóticos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA