Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1821(3): 405-15, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21840418

RESUMO

Inflammation is a major factor underlying acute coronary syndromes (ACS). HDL particles may be remodeled, becoming functionally defective, under the inflammatory conditions seen in ACS. Shotgun proteomics was used to monitor changes in the HDL proteome between male age-matched control, stable CAD, and ACS subjects (n=10/group). HDL was isolated by ultracentrifugation and separated by 1D-gel followed by LC-MS/MS. We identified 67 HDL-associated proteins, 20 of which validated recently identified proteins including vitronectin and complement C4B, and 5 of which were novel. Using gene ontology analysis, we found that the HDL-proteome consisted of proteins involved in cholesterol homeostasis (~50%), with significant contributions by proteins involved in lipid binding, antioxidant, acute-phase response, immune response, and endopeptidase/protease inhibition. Importantly, levels of apoA-IV were significantly reduced in ACS patients, whereas levels of serum amyloid A (SAA) and complement C3 (C3) were significantly increased (spectral counting; t-test p≤0.05), as confirmed by immunoblot or ELISA. Despite differences in protein composition, ABCA1, ABCG1, and SR-BI mediated cholesterol efflux assays did not indicate that HDL from ACS patients is functionally deficient as compared to controls, when corrected for apoA-I mass. Our results support that the HDL proteome differs between control, CAD and ACS patients. Increased abundance of SAA, C3, and other inflammatory proteins in HDL from ACS patients suggests that HDL reflects a shift to an inflammatory profile which, in turn, might alter the protective effects of HDL on the atherosclerotic plaque. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Assuntos
Síndrome Coronariana Aguda/sangue , Proteínas Sanguíneas/metabolismo , Inflamação/sangue , Lipoproteínas HDL/sangue , Proteoma/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Linhagem Celular , Colesterol/sangue , Colesterol/metabolismo , Doença da Artéria Coronariana/sangue , Humanos , Masculino , Pessoa de Meia-Idade
2.
J Lipid Res ; 52(11): 2043-55, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21846716

RESUMO

Recent studies have identified an ABCA1-dependent, phosphatidylcholine-rich microdomain, called the "high-capacity binding site" (HCBS), that binds apoA-I and plays a pivotal role in apoA-I lipidation. Here, using sucrose gradient fractionation, we obtained evidence that both ABCA1 and [¹²5I]apoA-I associated with the HCBS were found localized to nonraft microdomains. Interestingly, phosphatidylcholine (PtdCho) was selectively removed from nonraft domains by apoA-I, whereas sphingomyelin and cholesterol were desorbed from both detergent-resistant membranes and nonraft domains. The modulatory role of cholesterol on apoA-I binding to ABCA1/HCBS was also examined. Loading cells with cholesterol resulted in a drastic reduction in apoA-I binding. Conversely, depletion of membrane cholesterol by methyl-ß-cyclodextrin treatment resulted in a significant increase in apoA-I binding. Finally, we obtained evidence that apoA-I interaction with ABCA1 promoted the activation and gene expression of key enzymes in the PtdCho biosynthesis pathway. Taken together, these results provide strong evidence that the partitioning of ABCA1/HCBS to nonraft domains plays a pivotal role in the selective desorption of PtdCho molecules by apoA-I, allowing an optimal environment for cholesterol release and regeneration of the PtdCho-containing HCBS. This process may have important implications in preventing and treating atherosclerotic cardiovascular disease.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Microdomínios da Membrana/metabolismo , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/metabolismo , Multimerização Proteica , Transportador 1 de Cassete de Ligação de ATP , Animais , Sítios de Ligação , Linhagem Celular , Colesterol/metabolismo , Cricetinae , Humanos , Estrutura Quaternária de Proteína , Transporte Proteico
3.
J Lipid Res ; 51(4): 785-97, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19797257

RESUMO

The specifics of nascent HDL remodeling within the plasma compartment remain poorly understood. We developed an in vitro assay to monitor the lipid transfer between model nascent HDL (LpA-I) and plasma lipoproteins. Incubation of alpha-(125)I-LpA-I with plasma resulted in association of LpA-I with existing plasma HDL, whereas incubation with TD plasma or LDL resulted in conversion of alpha-(125)I-LpA-I to prebeta-HDL. To further investigate the dynamics of lipid transfer, nascent LpA-I were labeled with cell-derived [(3 )H]cholesterol (UC) or [(3)H]phosphatidylcholine (PC) and incubated with plasma at 37 degrees C. The majority of UC and PC were rapidly transferred to apolipoprotein B (apoB). Subsequently, UC was redistributed to HDL for esterification before being returned to apoB. The presence of a phospholipid transfer protein (PLTP) stimulator or purified PLTP promoted PC transfer to apoB. Conversely, PC transfer was abolished in plasma from PLTP(-/-) mice. Injection of (125)I-LpA-I into rabbits resulted in a rapid size redistribution of (125)I-LpA-I. The majority of [(3)H]UC from labeled r(HDL) was esterified in vivo within HDL, whereas a minority was found in LDL. These data suggest that apoB plays a major role in nascent HDL remodeling by accepting their lipids and donating UC to the LCAT reaction. The finding that nascent particles were depleted of their lipids and remodeled in the presence of plasma lipoproteins raises questions about their stability and subsequent interaction with LCAT.


Assuntos
Apolipoproteínas B/fisiologia , Lipoproteínas de Alta Densidade Pré-beta/química , Lipoproteínas/química , Animais , Apolipoproteína A-I/sangue , Apolipoproteína A-I/metabolismo , Apolipoproteína E3/sangue , Apolipoproteína E3/metabolismo , Apolipoproteínas B/sangue , Apolipoproteínas B/química , Colesterol/química , Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Esterificação , Feminino , Células Hep G2 , Lipoproteínas de Alta Densidade Pré-beta/administração & dosagem , Lipoproteínas de Alta Densidade Pré-beta/sangue , Lipoproteínas de Alta Densidade Pré-beta/isolamento & purificação , Humanos , Lipoproteínas/sangue , Lipoproteínas/isolamento & purificação , Lipoproteínas HDL/administração & dosagem , Lipoproteínas HDL/sangue , Lipoproteínas HDL/química , Lipoproteínas HDL/isolamento & purificação , Masculino , Camundongos , Camundongos Knockout , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Coelhos , Doença de Tangier/sangue , Fatores de Tempo
4.
Atherosclerosis ; 185(1): 127-36, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16023124

RESUMO

The molecular causes of severe high-density lipoprotein cholesterol (HDL-C) deficiency was examined in a group of 54 unrelated French Canadian subjects. The lecithin:cholesterol acyl transferase (LCAT) and apolipoprotein (apo) A-I gene were analyzed in all probands by direct DNA sequencing. While no LCAT mutation was detected, a novel nonsense apoA-I mutation (E136X) was found in 3/54 probands. Genetic analysis of two kindreds showed a strong co-segregation of the apoA-I locus with the low HDL-C trait. The E136X mutation was detected in families by MaeI restriction digestion. E136X carriers (n=17) had marked HDL-C deficiency; among the nine carriers > or = 35 years old, five men had developed premature coronary artery disease (CAD). A peptide of apparent molecular weight of 14 kDa was identified in fresh plasma, the HDL fractions and lipoprotein deficient plasma from the three probands but not in normal controls (n=3), suggesting that the mutant apoA-I peptide is secreted and binds lipids. The mutation was not observed in an additional 210 chromosomes from unrelated subjects of French Canadian descent, < 60 years of age, with CAD and low HDL-C levels. We conclude that apoA-I (E136X) is a cause of HDL-C deficiency in the French Canadian population and is associated with premature CAD.


Assuntos
Apolipoproteína A-I/genética , HDL-Colesterol/deficiência , Códon sem Sentido , DNA/genética , Doença de Tangier/genética , Adolescente , Adulto , Idoso , Apolipoproteína A-I/sangue , Canadá/epidemiologia , Criança , HDL-Colesterol/sangue , Doença das Coronárias/sangue , Doença das Coronárias/etnologia , Doença das Coronárias/genética , Eletroforese em Gel Bidimensional , Feminino , França/etnologia , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Reação em Cadeia da Polimerase , Doença de Tangier/sangue , Doença de Tangier/etnologia
5.
Circulation ; 107(10): 1366-71, 2003 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-12642355

RESUMO

BACKGROUND: Prospective studies have examined the relationship between coronary artery disease and low plasma levels of high-density lipoprotein cholesterol (HDL-C). METHODS AND RESULTS: We investigated the causes of hypoalphalipoproteinemia (HypoA; HDL-C <5th percentile) in 64 subjects (12 women and 52 men). Apolipoprotein AI-mediated cellular cholesterol and phospholipid efflux were measured in fibroblasts from HypoA subjects, 9 controls, 2 patients with Tangier disease, and 5 patients with hyperalphalipoproteinemia. A phospholipid efflux defect was defined as <70% of controls. Mean HDL-C was 0.49+/-0.21 mmol/L. Cholesterol and phospholipid efflux correlated strongly (r=0.72, P<0.001). Phospholipid efflux and HDL-C (r=0.64, P<0.001) correlated in HypoA subjects. However, phospholipid or cholesterol efflux was no longer a determinant of HDL-C levels at higher levels (> approximately 1.0 mmol/L) of HDL-C. In HypoA subjects, 4 cases of Tangier disease and 6 of familial HDL deficiency (heterozygous Tangier disease) were identified (10 of 64; 16%). In the remaining 54 subjects, mean lipid efflux was not significantly different from controls and subjects with hyperalphalipoproteinemia. A phospholipid efflux defect was identified in 7 additional HypoA subjects, and a cholesterol efflux defect was detected in 11 subjects. In 2 of these subjects, the ABCA1 gene was ruled out as the cause of the efflux defect, while in 3, the low HDL-C trait segregated with the ABCA1 gene locus. CONCLUSIONS: Lipidation of lipid-poor apolipoprotein AI may not be a major determinant of cholesterol accumulation within more mature HDL particles and increasing cholesterol or phospholipid efflux beyond normal levels may not lead to increase in plasma HDL-C levels. ABCA1 is essential in the initial steps of HDL formation but other plasma events are major modulators of HDL-C levels.


Assuntos
HDL-Colesterol/deficiência , Colesterol/metabolismo , Fosfolipídeos/metabolismo , Doença de Tangier/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Transporte Biológico , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Doença de Tangier/sangue , Doença de Tangier/genética
6.
Expert Rev Cardiovasc Ther ; 2(3): 417-30, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15151487

RESUMO

The plasma level of high-density lipoprotein (HDL)-cholesterol is inversely correlated with coronary artery disease, the leading cause of death worldwide. HDL particles are thought to mediate the uptake of peripheral cholesterol and, through exchange of core lipids with other lipoproteins or selective uptake by specific receptors, return this cholesterol to the liver for bile acid secretion or hormone synthesis in steroidogenic tissues. HDL particles also act on vascular processes by modulating vasomotor function, thrombosis, cell-adhesion molecule expression, platelet function, nitric oxide release, endothelial cell apoptosis and proliferation. Many of these effects involve signal transduction pathways and gene transcription. Several genetic disorders of HDLs have been characterized at the molecular level. The study of naturally occurring mutations has considerably enhanced understanding of the role of HDL particles. Some mutations causing HDL deficiency are associated with premature coronary artery disease, while others, paradoxically, may be associated with longevity. Modulation of HDL metabolism for therapeutic purposes must take into account, not only the cholesterol content of a particle but its lipid (especially phospholipid) composition, apolipoprotein content, size and charge. Current therapeutic strategies include the use of peroxisome proliferating activator receptor-alpha agonists (fibrates) that increase apolipoprotein AI production and increase lipoprotein lipase activity, statins that have a small effect on HDL-cholesterol but markedly reduce low-density lipoprotein-cholesterol, the cholesterol/HDL-cholesterol ratio and niacin that increases HDL-cholesterol. Potential therapeutic targets include inhibition of cholesteryl ester transfer protein, modulating the ATP-binding cassette A1 transporter, and decreasing HDL uptake by scavenger receptor-B1. Novel therapies include injection of purified apolipoprotien AI and short peptides taken orally, mimicking some of the biological effects of apolipoprotein AI.


Assuntos
Lipoproteínas HDL/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Ensaios Clínicos como Assunto , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipolipemiantes/uso terapêutico , Lipoproteínas HDL/efeitos dos fármacos , Lipoproteínas HDL/fisiologia , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia , Receptores de Lipoproteínas/efeitos dos fármacos , Receptores de Lipoproteínas/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
7.
J Am Coll Cardiol ; 55(23): 2580-9, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20513599

RESUMO

OBJECTIVES: The aim of this study was to determine whether a novel small molecule RVX-208 affects apolipoprotein (apo)A-I and high-density lipoprotein cholesterol (HDL-C) levels in vitro and in vivo. BACKGROUND: Increased apoA-I and HDL-C levels are potential therapeutic targets for reducing atherosclerotic disease. METHODS: HepG2 cells were treated with 0 to 60 mumol/l RVX-208 followed by assays for apoA-I and HDL-C production. For in vivo studies, African green monkeys (AGMs) received 15 to 60 mg/kg/day RVX-208, and the serum was analyzed for lipoprotein levels, HDL-subparticle distribution, cholesterol efflux, and activity of lipid-modifying enzymes. A phase I clinical trial was conducted in healthy volunteers (given 1 to 20 mg/kg/day of RVX-208) to assess safety, tolerability, and pharmacokinetics. RESULTS: The RVX-208 induced apoA-I messenger ribonucleic acid and protein synthesis in HepG2 cells, leading to increased levels of pre-beta-migrating and alpha-lipoprotein particles containing apoA-I (LpA-I) in spent media. Similarly, in AGMs, RVX-208 treatment for 63 days increased serum apoA-I and HDL-C levels (60% and 97%, respectively). In addition, the levels of pre-beta(1)-LpA-I and alpha1-LpA-I HDL-subparticles were increased as well as adenosine triphosphate binding cassette AI, adenosine triphosphate binding cassette G1, and scavenger receptor class B type I-dependent cholesterol efflux. These changes were not mediated by cholesteryl-ester-transfer protein. Treatment of humans for 1 week with oral RVX-208 increased apoA-I, pre-beta-HDL, and HDL functionality. CONCLUSIONS: RVX-208 increases apoA-I and HDL-C in vitro and in vivo. In AGMs, RVX-208 raises serum pre-beta(1)-LpA-I and alpha-LpA-I levels and enhances cholesterol efflux. Data in humans point to beneficial features of RVX-208 that might be useful for treating atherosclerosis.


Assuntos
Apolipoproteína A-I/sangue , Apolipoproteína A-I/efeitos dos fármacos , HDL-Colesterol/sangue , HDL-Colesterol/efeitos dos fármacos , Quinazolinas/farmacologia , Animais , Apolipoproteína A-I/biossíntese , Apolipoproteína A-I/metabolismo , Células Cultivadas , Chlorocebus aethiops , HDL-Colesterol/metabolismo , Cricetinae , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Seguimentos , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Humanos , Técnicas In Vitro , Macaca fascicularis , Masculino , Peso Molecular , Probabilidade , Quinazolinas/química , Quinazolinonas , Distribuição Aleatória , Medição de Risco
8.
Am J Cardiol ; 102(10): 1341-7, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18993152

RESUMO

To determine whether available lipid-modifying medication can increase high-density lipoprotein (HDL) cholesterol in well-defined genetic or familial HDL-deficiency states, we studied 19 men with HDL deficiency (HDL cholesterol <5th percentile for age and gender) 55 +/- 10 years of age. Concomitant risk factors included diabetes (n = 3) and hypertension (n = 7) and 8 patients had coronary artery disease. Molecular analysis revealed that 4 patients had a mutation in the ABCA1 gene. Patients were assigned to sequentially receive atorvastatin 20 mg/day, fenofibrate 200 mg/day, and extended-release niacin 2 g/day for 8 weeks, with a 4-week washout period between each treatment. Patients in whom a statin was required, according to current treatment guidelines, were kept on atorvastatin throughout the study. Baseline HDL cholesterol level was 0.63 +/- 0.12 mmol/L (24 +/- 5 mg/dl), triglycerides 2.01 +/- 0.98 mmol/L (180 +/- 86 mg/dl), and low-density lipoprotein (LDL) cholesterol 2.29 +/- 0.95 mmol/L (94 +/- 39 mg/dl). Mean percent changes in HDL cholesterol on atorvastatin, fenofibrate, and niacin were -6% (p = NS), +6% (p = NS), and +22% (p <0.05), respectively. Furthermore, niacin significantly increased the large alpha-1 apolipoprotein A-I-containing HDL subspecies (12 to 17 nm). In conclusion, niacin was the only effective drug to increase HDL cholesterol. The absolute increase in HDL cholesterol, approximately 0.10 mmol/L (3.9 mg/dl), is of uncertain clinical significance. Biomarkers of HDL-mediated cellular cholesterol efflux were not changed by niacin therapy. Atorvastatin or fenofibrate had little effect on HDL cholesterol; atorvastatin decreased the total cholesterol/HDL cholesterol ratio by 26%. Fenofibrate did not change HDL cholesterol levels and caused an increase in LDL cholesterol. Aggressive LDL cholesterol lowering may be the strategy of choice in such patients.


Assuntos
HDL-Colesterol/deficiência , Fenofibrato/administração & dosagem , Ácidos Heptanoicos/administração & dosagem , Hipolipemiantes/uso terapêutico , Niacina/administração & dosagem , Pirróis/administração & dosagem , Adulto , Idoso , Atorvastatina , Deficiências Nutricionais/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Índice de Gravidade de Doença
9.
J Biol Chem ; 283(17): 11164-75, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18218626

RESUMO

The molecular mechanisms underlying the apoA-I/ABCA1 endocytic trafficking pathway in relation to high density lipoprotein (HDL) formation remain poorly understood. We have developed a quantitative cell surface biotinylation assay to determine the compartmentalization and trafficking of apoA-I between the plasma membrane (PM) and intracellular compartments (ICCs). Here we report that (125)I-apoA-I exhibited saturable association with the PM and ICCs in baby hamster kidney cells stably overexpressing ABCA1 and in fibroblasts. The PM was found to have a 2-fold higher capacity to accommodate apoA-I as compared with ICCs. Overexpressing various levels of ABCA1 in baby hamster kidney cells promoted the association of apoA-I with PM and ICCs compartments. The C-terminal deletion of apoA-I Delta(187-243) and reconstituted HDL particles exhibited reduced association of apoA-I with both the PM and ICCs. Interestingly, cell surface biotinylation with a cleavable biotin revealed that apoA-I induces ABCA1 endocytosis. Such endocytosis was impaired by naturally occurring mutations of ABCA1 (Q597R and C1477R). To better understand the role of the endocytotic pathway in the dynamics of the lipidation of apoA-I, a pulse-chase experiment was performed, and the dissociation (re-secretion) of (125)I-apoA-I from both PM and ICCs was monitored over a 6-h period. Unexpectedly, we found that the time required for 50% dissociation of (125)I-apoA-I from the PM was 4-fold slower than that from ICCs at 37 degrees C. Finally, treatment of the cells with phosphatidylcholine-specific phospholipase C, increased the dissociation of apoA-I from the PM. This study provides evidence that the lipidation of apoA-I occurs in two kinetically distinguishable compartments. The finding that apoA-I specifically mediates the continuous endocytic recycling of ABCA1, together with the kinetic data showing that apoA-I associated with ICCs is rapidly re-secreted, suggests that the endocytotic pathway plays a central role in the genesis of nascent HDL.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Animais , Cricetinae , Citosol/metabolismo , Relação Dose-Resposta a Droga , Endocitose , Fibroblastos/metabolismo , Deleção de Genes , Humanos , Cinética , Modelos Biológicos , Mutação , Estrutura Terciária de Proteína
10.
J Lipid Res ; 48(11): 2428-42, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17656736

RESUMO

It is well accepted that both apolipoprotein A-I (apoA-I) and ABCA1 play crucial roles in HDL biogenesis and in the human atheroprotective system. However, the nature and specifics of apoA-I/ABCA1 interactions remain poorly understood. Here, we present evidence for a new cellular apoA-I binding site having a 9-fold higher capacity to bind apoA-I compared with the ABCA1 site in fibroblasts stimulated with 22-(R)-hydroxycholesterol/9-cis-retinoic acid. This new cellular apoA-I binding site was designated "high-capacity binding site" (HCBS). Glyburide drastically reduced (125)I-apoA-I binding to the HCBS, whereas (125)I-apoA-I showed no significant binding to the HCBS in ABCA1 mutant (Q597R) fibroblasts. Furthermore, reconstituted HDL exhibited reduced affinity for the HCBS. Deletion of the C-terminal region of apoA-I (Delta187-243) drastically reduced the binding of apoA-I to the HCBS. Interestingly, overexpressing various levels of ABCA1 in BHK cells promoted the formation of the HCBS. The majority of the HCBS was localized to the plasma membrane (PM) and was not associated with membrane raft domains. Importantly, treatment of cells with phosphatidylcholine-specific phospholipase C, but not sphingomyelinase, concomitantly reduced the binding of (125)I-apoA-I to the HCBS, apoA-I-mediated cholesterol efflux, and the formation of nascent apoA-I-containing particles. Together, these data suggest that a functional ABCA1 leads to the formation of a major lipid-containing site for the binding and the lipidation of apoA-I at the PM. Our results provide a biochemical basis for the HDL biogenesis pathway that involves both ABCA1 and the HCBS, supporting a two binding site model for ABCA1-mediated nascent HDL genesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Apolipoproteína A-I/metabolismo , Membrana Celular/metabolismo , Lipoproteínas HDL/biossíntese , Transportador 1 de Cassete de Ligação de ATP , Sítios de Ligação , Humanos , Doença de Tangier/fisiopatologia
11.
Biochemistry ; 46(51): 14969-78, 2007 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-18052040

RESUMO

The human acid sphingomyelinase (ASM, EC 3.1.4.12), a lysosomal and secretory protein coded by the sphingomyelin phosphodiesterase 1 (SMPD-1) gene, catalyzes the degradation of sphingomyelin (SM) to ceramide and phosphorylcholine. We examined the structural-functional properties of its carboxyl-terminus (amino acids 462-629), which harbors approximately 1/3 of all mutations discovered in the SMPD-1 gene. We created four naturally occurring mutants (DeltaR608, R496L, G577A, and Y537H) and five serial carboxyl-terminal deletion mutants (N620, N590, N570, N510, and N490). Transient transfection of the His/V5-tagged wild-type and mutant recombinant ASM in Chinese hamster ovary cells showed that all the mutants were normally expressed. Nonetheless, none of them, except the smallest deletion mutant N620 that preserved all post-translational modifications, were found capable of secretion to the medium. Furthermore, only the N620 conserved functional integrity (100% activity of the wild type); all other mutants completely lost the ability to catalyze SM hydrolysis. Importantly, cell surface biotinylation revealed that mutant DeltaR608 transfected CHO cells and fibroblasts from a compound heterozygous Niemann-Pick disease type B (NPD-B) patient (DeltaR608 and R441X) have defective translocation to the plasma membrane. Furthermore, we demonstrated that the DeltaR608 and N590 were trapped in the endoplasmic reticulum (ER) quality control checkpoint in contrast to the wild-type lysosomal localization. Interestingly, while the steady-state levels of ubiquitination were minimal for the wild-type ASM, a significant amount of Lys63-linked polyubiquitinated DeltaR608 and N590 could be purified by S5a-affinity chromatography, indicating an important misfolding in the carboxyl-terminal mutants. Altogether, we provide evidence that the carboxyl-terminus of the ASM is crucial for its protein structure, which in turns dictates the enzymatic function and secretion.


Assuntos
Dissulfetos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Retículo Endoplasmático/enzimologia , Expressão Gênica , Humanos , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Esfingomielina Fosfodiesterase/química , Esfingomielina Fosfodiesterase/genética , Spodoptera , Ubiquitina/metabolismo
12.
Curr Opin Lipidol ; 17(3): 258-67, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16680030

RESUMO

PURPOSE OF REVIEW: The interest for the human HDL system was recently revived by the identification of the ABCA1 as a critical component in the formation and maintenance of plasma HDL levels. The present review focuses on recent progress in our understanding of the basic mechanisms underlying HDL biogenesis pathways. RECENT FINDINGS: Several novel mechanisms governing ABCA1/apoA-I interactions have recently been identified: apolipoprotein A-I activates ABCA1 phosphorylation through the cAMP/protein kinase A-dependent pathway; the majority of ABCA1 exists as a tetramer in human living cell, supporting the concept that the homotetrameric ABCA1 complex constitutes the minimum functional unit for the formation of nascent HDL particles; apolipoprotein A-I has been shown to have a recycling retroendocytic pathway with uptake and resecretion of the lipidated nascent HDL particles by the cell, most likely through the ABCA1 transporter pathway; there is evidence that the speciation of nascent HDL into pre-beta and alpha-HDL is linked to specific cell lines, and occurs by both ABCA1-dependent and independent pathways. SUMMARY: The fundamental mechanisms underlying the biogenesis, speciation and maturation of HDL remain complex and not well understood. Understanding the mechanisms governing HDL genesis at the cellular level could provide novel insights into the human atheroprotective system in health and disease.


Assuntos
Lipoproteínas HDL/biossíntese , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , HDL-Colesterol/metabolismo , Humanos
13.
Can J Cardiol ; 22 Suppl B: 35B-40B, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16498511

RESUMO

Atherosclerosis is a disease of blood vessel walls that is thought to be initiated as a reaction of insults to the endothelium. The complex sequence of cellular events that begins with focal inflammation leads to the accumulation of leukocytes in the subendothelial layer and unrestricted uptake of oxidized lipoproteins by macrophages and smooth muscle cells, leading to foam cell formation. Vascular endothelial cells do not undergo the foam cell transformation and do not accumulate cholesterol in atherosclerotic plaques to the same extent as macrophages or smooth muscle cells. However, vascular endothelial cells express receptors for oxidized lipoproteins, and have the biochemical pathways for sterol synthesis and receptor-mediated endocytosis of lipoproteins. Data from the authors' laboratory show that high density lipoproteins but not lipid-free apolipoprotein A-I promote cellular cholesterol efflux in human umbilical vascular endothelial cells and human aortic endothelial cells. Gene expression microarrays were used to examine the differential expression of genes after cholesterol loading. While sterol regulatory element-binding protein-sensitive genes were downregulated, the authors identified a novel transporter, the ATP-binding cassette G1 (ABCG1) to be highly expressed in response to both cellular cholesterol loading and stimulation with the liver X receptor agonist 22-hydroxycholesterol. The ABCA1 gene and protein, the major modulator of cellular cholesterol efflux in macrophages and in peripheral and hepatic tissues, are only weakly expressed in human umbilical vascular endothelial cells and human aortic endothelial cells. These data suggest that endothelial cells maintain cholesterol homeostasis by downregulating cholesterol synthesis and low density lipoprotein receptors and by a cellular cholesterol efflux mechanism onto low-affinity but high-capacity high density lipoproteins. The role of ABC-type transporters, including ABCG1, requires further examination.


Assuntos
Colesterol/metabolismo , Endotélio Vascular/metabolismo , Homeostase , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Células Cultivadas , HDL-Colesterol/metabolismo , Expressão Gênica , Humanos , Receptores Depuradores Classe B/metabolismo
14.
J Lipid Res ; 47(3): 622-32, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16319418

RESUMO

We previously reported that human Niemann-Pick Disease type B (NPD-B) is associated with low HDL. In this study, we investigated the pathophysiology of this HDL deficiency by examining both HDL samples from NPD-B patients and nascent high density lipoprotein (LpA-I) generated by incubation of lipid-free apolipoprotein A-I (apoA-I) with NPD-B fibroblasts. Interestingly, both LpA-I and HDL isolated from patient plasma had a significant increase in sphingomyelin (SM) mass ( approximately 50-100%). Analysis of LCAT kinetics parameters (V(max) and K(m)) revealed that either LpA-I or plasma HDL from NPD-B, as well as reconstituted HDL enriched with SM, exhibited severely decreased LCAT-mediated cholesterol esterification. Importantly, we documented that SM enrichment of NPD-B LpA-I was not attributable to increased cellular mass transfer of SM or unesterified cholesterol to lipid-free apoA-I. Finally, we obtained evidence that the conditioned medium from HUVEC, THP-1, and normal fibroblasts, but not NPD-B fibroblasts, contained active secretory sphingomyelinase (S-SMase) that mediated the hydrolysis of [(3)H]SM-labeled LpA-I and HDL(3). Furthermore, expression of mutant SMase (DeltaR608) in CHO cells revealed that DeltaR608 was synthesized normally but had defective secretion and activity. Our data suggest that defective S-SMase in NPD leads to SM enrichment of HDL that impairs LCAT-mediated nascent HDL maturation and contributes to HDL deficiency. Thus, S-SMase and LCAT may act in concert and play a crucial role in the biogenesis and maturation of nascent HDL particles.


Assuntos
Lipoproteínas HDL/metabolismo , Doenças de Niemann-Pick/metabolismo , Esfingomielinas/metabolismo , Adulto , Animais , Células CHO , Células Cultivadas , Colesterol/metabolismo , Cricetinae , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Doenças de Niemann-Pick/sangue , Fosfolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/farmacologia , Transfecção
15.
J Lipid Res ; 46(8): 1668-77, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15897603

RESUMO

It is generally thought that the large heterogeneity of human HDL confers antiatherogenic properties; however, the mechanisms governing HDL biogenesis and speciation are complex and poorly understood. Here, we show that incubation of exogenous apolipoprotein A-I (apoA-I) with fibroblasts, CaCo-2, or CHO-overexpressing ABCA1 cells generates only alpha-nascent apolipoprotein A-I-containing particles (alpha-LpA-I) with diameters of 8-20 nm, whereas human umbilical vein endothelial cells and ABCA1 mutant (Q597R) cells were unable to form such particles. Interestingly, incubation of exogenous apoA-I with either HepG2 or macrophages generates both alpha-LpA-I and prebeta1-LpA-I. Furthermore, glyburide inhibits almost completely the formation of alpha-LpA-I but not prebeta1-LpA-I. Similarly, endogenously secreted HepG2 apoA-I was found to be associated with both prebeta1-LpA-I and alpha-LpA-I; by contrast, CaCo-2 cells secreted only alpha-LpA-I. To determine whether alpha-LpA-I generated by fibroblasts is a good substrate for LCAT, isolated alpha-LpA-I as well as reconstituted HDL [r(HDL)] was reacted with LCAT. Although both particles had similar V(max) (8.4 vs. 8.2 nmol cholesteryl ester/h/microg LCAT, respectively), the K(m) value was increased 2-fold for alpha-LpA-I compared with r(HDL) (1.2 vs. 0.7 microM apoA-I). These results demonstrate that 1) ABCA1 is required for the formation of alpha-LpA-I but not prebeta1-LpA-I; and 2) alpha-LpA-I interacts efficiently with LCAT. Thus, our study provides direct evidence for a new link between specific cell lines and the speciation of nascent HDL that occurs by both ABCA1-dependent and -independent pathways.


Assuntos
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/biossíntese , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Cinética , Tamanho da Partícula , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo
16.
J Lipid Res ; 46(7): 1457-65, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15654121

RESUMO

It has been suggested that ABCA1 interacts preferentially with lipid-poor apolipoprotein A-I (apoA-I). Here, we show that treatment of plasma with dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles generates prebeta(1)-apoA-I-containing lipoproteins (LpA-I)-like particles similar to those of native plasma. Isolated prebeta(1)-LpA-I-like particles inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than HDL(3) (IC(50) = 2.20 +/- 0.35 vs. 37.60 +/- 4.78 microg/ml). We next investigated the ability of DMPC-treated plasma to promote phospholipid and unesterified (free) cholesterol efflux from J774 macrophages stimulated or not with cAMP. At 2 mg DMPC/ml plasma, both phospholipid and free cholesterol efflux were increased ( approximately 50% and 40%, respectively) in cAMP-stimulated cells compared with unstimulated cells. Similarly, both phospholipid and free cholesterol efflux to either isolated native prebeta(1)-LpA-I and prebeta(1)-LpA-I-like particles were increased significantly in stimulated cells. Furthermore, glyburide significantly inhibited phospholipid and free cholesterol efflux to DMPC-treated plasma. Removal of apoA-I-containing lipoproteins from normolipidemic plasma drastically reduced free cholesterol efflux mediated by DMPC-treated plasma. Finally, treatment of Tangier disease plasma with DMPC affected the amount of neither prebeta(1)-LpA-I nor free cholesterol efflux. These results indicate that DMPC enrichment of normal plasma resulted in the redistribution of apoA-I from alpha-HDL to prebeta-HDL, allowing for more efficient ABCA1-mediated cellular lipid release. Increasing the plasma prebeta(1)-LpA-I level by either pharmacological agents or direct infusions might prevent foam cell formation and reduce atherosclerotic vascular disease.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/sangue , Lipoproteínas HDL/química , Fosfolipídeos/química , Transportador 1 de Cassete de Ligação de ATP , Animais , Apolipoproteína A-I/sangue , Apolipoproteína A-I/efeitos dos fármacos , Células Cultivadas , Dimiristoilfosfatidilcolina/química , Humanos , Lipoproteínas HDL3 , Lipossomos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Doença de Tangier/sangue
17.
J Lipid Res ; 44(5): 884-92, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12611904

RESUMO

To investigate the metabolism of HDL-apolipoprotein E (apoE) particles in human plasma, we isolated a fraction of plasma HDL-apoEs that lack apoA-I (HDL-LpE) from subjects with apoE3/3 phenotype by immunoaffinity. Plasma HDL-LpE had a particle size ranging from 9 nm to 18.5 nm in diameter and was characterized by two-dimensional nondenaturing gradient gel electrophoresis as having either gamma-, prebeta1-, prebeta2-, or alpha-electrophoretic mobility. HDL-LpE was also present in the medium of cultured human hepatoma cell lines and monocyte-derived macrophages. The majority of apoE3 was found as a monomeric form in HDL-LpE and floated at density d > 1.21 g/ml. Plasma levels of HDL-LpE in normolipidemic, CETP-deficient, and ABCA1-deficient subjects were 0.72 +/- 0.15 mg/dl (n = 12), 1.77 +/- 0.75 mg/dl (n = 3), and 0.55 +/- 0.11 mg/dl (n = 3), respectively. The ratio of HDL-apoE containing apoA-I to HDL-LpE was significantly higher 4 h after a fat load, representing a 35 +/- 9% increase (n = 3). Isolated plasma HDL-LpE3 was as effective as apoE3, reconstituted HDL particles, or apoA-I in promoting cellular cholesterol efflux. These results demonstrate that 1) plasma HDL-LpE may have hepatogenous and macrophagic origins; 2) HDL-LpE was preserved even with large reductions in apoA-I-containing lipoproteins; 3) HDL-LpE was active in the transfer of apoE to triglyceride-rich lipoproteins, and 4) HDL-LpEs efficiently take up cell-derived cholesterol.


Assuntos
Apolipoproteínas E/sangue , Lipoproteínas HDL/sangue , Apolipoproteína A-I/sangue , Apolipoproteína A-I/isolamento & purificação , Apolipoproteínas E/isolamento & purificação , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , Colesterol/sangue , Colesterol/isolamento & purificação , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Feminino , Humanos , Lipídeos/sangue , Lipídeos/isolamento & purificação , Lipoproteínas HDL/isolamento & purificação , Lipoproteínas HDL/fisiologia , Masculino , Fatores de Tempo
18.
J Lipid Res ; 45(5): 839-48, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14754908

RESUMO

Apolipoprotein E (apoE)/ABCA1 interactions were investigated in human intact fibroblasts induced with 22(R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Here, we show that purified human plasma apoE3 forms a complex with ABCA1 in normal fibroblasts. Lipid-free apoE3 inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than reconstituted HDL particles (IC(50) = 2.5 +/- 0.4 microg/ml vs. 12.3 +/- 1.3 microg/ml). ApoE isoforms showed similar binding for ABCA1 and exhibited identical kinetics in their abilities to induce ABCA1-dependent cholesterol efflux. Mutation of ABCA1 associated with Tangier disease (C1477R) abolished both apoE3 binding and apoE3-mediated cholesterol efflux. Analysis of apoE3-containing particles generated during the incubation of lipid-free apoE3 with stimulated normal cells showed nascent apoE3/cholesterol/phospholipid complexes that exhibited prebeta-electrophoretic mobility with a particle size ranging from 9 to 15 nm, whereas lipid-free apoE3 incubated with ABCA1 mutant (C1477R) cells was unable to form such particles. These results demonstrate that 1). apoE association with lipids reduced its ability to interact with ABCA1; 2). apoE isoforms did not affect apoE binding to ABCA1; 3). apoE-mediated ABCA1-dependent cholesterol efflux was not affected by apoE isoforms in fibroblasts; and 4). the lipid translocase activity of ABCA1 generates apoE-containing high density-sized lipoprotein particles. Thus, ABCA1 is essential for the biogenesis of high density-sized lipoprotein containing only apoE particles in vivo.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteínas E/metabolismo , Metabolismo dos Lipídeos , Transportador 1 de Cassete de Ligação de ATP , Células Cultivadas , Reagentes de Ligações Cruzadas , Fibroblastos , Humanos , Mutação , Ligação Proteica , Isoformas de Proteínas/metabolismo , Pele
20.
J Lipid Res ; 43(12): 2087-94, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12454270

RESUMO

ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in apoA-I lipidation, a key step in reverse cholesterol transport. cAMP induces apoA-I binding activity and promotes cellular cholesterol efflux. We investigated the role of the cAMP/protein kinase A (PKA) dependent pathway in the regulation of cellular cholesterol efflux. Treatment of normal fibroblasts with 8-bromo-cAMP (8-Br-cAMP) increased significantly apoA-I-mediated cholesterol efflux, with specificity for apoA-I, but not for cyclodextrin. Concomitantly, 8-Br-cAMP increased ABCA1 phosphorylation in a time-dependent manner. Maximum phosphorylation was reached in <10 min, representing a 260% increase compared to basal ABCA1 phosphorylation level. Forskolin, a known cAMP regulator, increased both cellular cholesterol efflux and ABCA1 phosphorylation. In contrast, H-89 PKA inhibitor reduced cellular cholesterol efflux by 70% in a dose-dependent manner and inhibited almost completely ABCA1 phosphorylation. To determine whether naturally occurring mutants of ABCA1 may affect its phosphorylation activity, fibroblasts from subjects with familial HDL deficiency (FHD, heterozygous ABCA1 defect) and Tangier disease (TD, homozygous/compound heterozygous ABCA1 defect) were treated with 8-Br-cAMP or forskolin. Cellular cholesterol efflux and ABCA1 phosphorylation were increased in FHD but not in TD cells. Taken together, these findings provide evidence for a link between the cAMP/PKA-dependent pathway, ABCA1 phosphorylation, and apoA-I mediated cellular cholesterol efflux.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Apolipoproteína A-I/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Mutação , Fosforilação , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Doença de Tangier/genética , Doença de Tangier/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA