Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Breast Cancer Res Treat ; 150(3): 487-99, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25788226

RESUMO

Triple-negative breast cancer (TNBC), the most aggressive breast cancer subtype, occurs in younger women and is associated with poor prognosis. Gain-of-function mutations in TP53 are a frequent occurrence in TNBC and have been demonstrated to repress apoptosis and up-regulate cell cycle progression. Even though TNBC responds to initial chemotherapy, resistance to chemotherapy develops and is a major clinical problem. Tumor recurrence eventually occurs and most patients die from their disease. An urgent need exists to identify molecular-targeted therapies that can enhance chemotherapy response. In the present study, we report that targeting PELP1, an oncogenic co-regulator molecule, could enhance the chemotherapeutic response of TNBC through the inhibition of cell cycle progression and activation of apoptosis. We demonstrate that PELP1 interacts with MTp53, regulates its recruitment, and alters epigenetic marks at the target gene promoters. PELP1 knockdown reduced MTp53 target gene expression, resulting in decreased cell survival and increased apoptosis upon genotoxic stress. Mechanistic studies revealed that PELP1 depletion contributes to increased stability of E2F1, a transcription factor that regulates both cell cycle and apoptosis in a context-dependent manner. Further, PELP1 regulates E2F1 stability in a KDM1A-dependent manner, and PELP1 phosphorylation at the S1033 residue plays an important role in mediating its oncogenic functions in TNBC cells. Accordingly, depletion of PELP1 increased the expression of E2F1 target genes and reduced TNBC cell survival in response to genotoxic agents. PELP1 phosphorylation was significantly greater in the TNBC tumors than in the other subtypes of breast cancer and in the normal tissues. These findings suggest that PELP1 is an important molecular target in TNBC, and that PELP1-targeted therapies may enhance response to chemotherapies.


Assuntos
Proteínas Correpressoras/metabolismo , Fator de Transcrição E2F1/metabolismo , Mutação , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína Supressora de Tumor p53/genética , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proteínas Correpressoras/antagonistas & inibidores , Proteínas Correpressoras/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Fosforilação , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo
2.
Cancer Res ; 82(20): 3830-3844, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35950923

RESUMO

Most patients with estrogen receptor alpha-positive (ER+) breast cancers initially respond to treatment but eventually develop therapy resistance with disease progression. Overexpression of oncogenic ER coregulators, including proline, glutamic acid, and leucine-rich protein 1 (PELP1), are implicated in breast cancer progression. The lack of small molecules that inhibits PELP1 represents a major knowledge gap. Here, using a yeast-two-hybrid screen, we identified novel peptide inhibitors of PELP1 (PIP). Biochemical assays demonstrated that one of these peptides, PIP1, directly interacted with PELP1 to block PELP1 oncogenic functions. Computational modeling of PIP1 revealed key residues contributing to its activity and facilitated the development of a small-molecule inhibitor of PELP1, SMIP34, and further analyses confirmed that SMIP34 directly bound to PELP1. In breast cancer cells, SMIP34 reduced cell growth in a dose-dependent manner. SMIP34 inhibited proliferation of not only wild-type (WT) but also mutant (MT) ER+ and therapy-resistant breast cancer cells, in part by inducing PELP1 degradation via the proteasome pathway. RNA sequencing analyses showed that SMIP34 treatment altered the expression of genes associated with estrogen response, cell cycle, and apoptosis pathways. In cell line-derived and patient-derived xenografts of both WT and MT ER+ breast cancer models, SMIP34 reduced proliferation and significantly suppressed tumor progression. Collectively, these results demonstrate SMIP34 as a first-in-class inhibitor of oncogenic PELP1 signaling in advanced breast cancer. SIGNIFICANCE: Development of a novel inhibitor of oncogenic PELP1 provides potential therapeutic avenues for treating therapy-resistant, advanced ER+ breast cancer.


Assuntos
Neoplasias da Mama , Proteínas Correpressoras , Fatores de Transcrição , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proteínas Correpressoras/antagonistas & inibidores , Proteínas Correpressoras/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios , Feminino , Ácido Glutâmico , Humanos , Leucina , Prolina , Complexo de Endopeptidases do Proteassoma , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
3.
Neurooncol Adv ; 1(1): vdz042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32309805

RESUMO

BACKGROUND: Glioblastoma (GBM) is a deadly neoplasm of the central nervous system. The molecular mechanisms and players that contribute to GBM development is incompletely understood. METHODS: The expression of PELP1 in different grades of glioma and normal brain tissues was analyzed using immunohistochemistry on a tumor tissue array. PELP1 expression in established and primary GBM cell lines was analyzed by Western blotting. The effect of PELP1 knockdown was studied using cell proliferation, colony formation, migration, and invasion assays. Mechanistic studies were conducted using RNA-seq, RT-qPCR, immunoprecipitation, reporter gene assays, and signaling analysis. Mouse orthotopic models were used for preclinical evaluation of PELP1 knock down. RESULTS: Nuclear receptor coregulator PELP1 is highly expressed in gliomas compared to normal brain tissues, with the highest expression in GBM. PELP1 expression was elevated in established and patient-derived GBM cell lines compared to normal astrocytes. Knockdown of PELP1 resulted in a significant decrease in cell viability, survival, migration, and invasion. Global RNA-sequencing studies demonstrated that PELP1 knockdown significantly reduced the expression of genes involved in the Wnt/ß-catenin pathway. Mechanistic studies demonstrated that PELP1 interacts with and functions as a coactivator of ß-catenin. Knockdown of PELP1 resulted in a significant increase in survival of mice implanted with U87 and GBM PDX models. CONCLUSIONS: PELP1 expression is upregulated in GBM and PELP1 signaling via ß-catenin axis contributes to GBM progression. Thus, PELP1 could be a potential target for the development of therapeutic intervention in GBM.

4.
Elife ; 62017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786813

RESUMO

The majority of human breast cancer is estrogen receptor alpha (ER) positive. While anti-estrogens/aromatase inhibitors are initially effective, resistance to these drugs commonly develops. Therapy-resistant tumors often retain ER signaling, via interaction with critical oncogenic coregulator proteins. To address these mechanisms of resistance, we have developed a novel ER coregulator binding modulator, ERX-11. ERX-11 interacts directly with ER and blocks the interaction between a subset of coregulators with both native and mutant forms of ER. ERX-11 effectively blocks ER-mediated oncogenic signaling and has potent anti-proliferative activity against therapy-sensitive and therapy-resistant human breast cancer cells. ERX-11 is orally bioavailable, with no overt signs of toxicity and potent activity in both murine xenograft and patient-derived breast tumor explant models. This first-in-class agent, with its novel mechanism of action of disrupting critical protein-protein interactions, overcomes the limitations of current therapies and may be clinically translatable for patients with therapy-sensitive and therapy-resistant breast cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas do Receptor de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo , Administração Oral , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Antagonistas do Receptor de Estrogênio/administração & dosagem , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Técnicas de Cultura de Órgãos , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos
5.
Mol Cancer Ther ; 13(6): 1578-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24688046

RESUMO

Proline, Glutamic acid-, and Leucine-rich Protein 1 (PELP1) is a proto-oncogene that modulates estrogen receptor (ER) signaling. PELP1 expression is upregulated in breast cancer, contributes to therapy resistance, and is a prognostic marker of poor survival. In a subset of breast tumors, PELP1 is predominantly localized in the cytoplasm and PELP1 participates in extranuclear signaling by facilitating ER interactions with Src and phosphoinositide 3-kinase (PI3K). However, the mechanism by which PELP1 extranuclear actions contributes to cancer progression and therapy resistance remains unclear. In this study, we discovered that PELP1 cross-talked with the serine/threonine protein kinase mTOR and modulated mTOR signaling. PELP1 knockdown significantly reduced the activation of mTOR downstream signaling components. Conversely, PELP1 overexpression excessively activated mTOR signaling components. We detected the presence of the mTOR signaling complex proteins in PELP1 immunoprecipitates. mTOR-targeting drugs (rapamycin and AZD8055) significantly reduced proliferation of PELP1-overexpressed breast cancer cells in both in vitro and in vivo xenograft tumor models. MCF7 cells that uniquely retain PELP1 in the cytoplasm showed resistance to hormonal therapy and mTOR inhibitors sensitized PELP1cyto cells to hormonal therapy in xenograft assays. Notably, immunohistochemical studies using xenograft tumors derived from PELP1 overexpression model cells showed increased mTOR signaling and inhibition of mTOR rendered PELP1-driven tumors to be highly sensitive to therapeutic inhibition. Collectively, our data identified the PELP1-mTOR axis as a novel component of PELP1 oncogenic functions and suggest that mTOR inhibitor(s) will be effective chemotherapeutic agents for downregulating PELP1 oncogenic functions.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Proteínas Correpressoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas Correpressoras/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Proto-Oncogene Mas , Receptores de Estrogênio/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
6.
Oncotarget ; 4(1): 18-28, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23248157

RESUMO

Glioma development is a multistep process, involving alterations in genetic and epigenetic mechanisms. Understanding the mechanisms and enzymes that promote epigenetic changes in gliomas are urgently needed to identify novel therapeutic targets. We examined the role of histone demethylase KDM1 in glioma progression. KDM1 was overexpressed in gliomas and its expression positively correlated with histological malignancy. Knockdown of KDM1 expression or its pharmacological inhibition using pargyline or NCL-1 significantly reduced the proliferation of glioma cells. Inhibition of KDM1 promoted up regulation of the p53 target genes p21 and PUMA. Patient-derived primary GBM cells expressed high levels of KDM1 and pharmacological inhibition of KDM1 decreased their proliferation. Further, KDM1 inhibition reduced the expression of stemness markers CD133 and nestin in GBM cells. Mouse xenograft assays revealed that inhibition of KDM1 significantly reduced glioma xenograft tumor growth. Inhibition of KDM1 increased levels of H3K4-me2 and H3K9-Ac histone modifications, reduced H3K9-me2 modification and promoted expression of p53 target genes (p21 and PUMA), leading to apoptosis of glioma xenograft tumors. Our results suggest that KDM1 is overexpressed in gliomas and could be a potential therapeutic target for the treatment of gliomas.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Glioma/tratamento farmacológico , Histona Desmetilases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Imuno-Histoquímica , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pargilina/farmacologia , Pargilina/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA