Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(9): 322, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012612

RESUMO

Efficient treatment of textile dyeing wastewater can be achieved through electrocoagulation (EC) with minimal sludge production; however, the selection of the appropriate electrode is essential in lowering overall costs. Also, the reuse of the treated aqueous azo dye solution from this process has not been explored in detail. With these objectives, this study aims to treat synthetic azo dye solutions and achieve high colour removal efficiency (CRE%) using similar (Ti-Ti) and dissimilar (Ti-Cu) metal electrodes through EC with an attempt to reduce the cost. The aqueous Coralene Rubine GFL azo dye was used to examine the efficiency and cost of the EC process. X-Ray Photoelectron Spectroscopy was used to study the EC mechanism, while High Performance Liquid Chromatography was used to analyse the degradation of the dye and the formation of intermediate compounds. The concentration of metal ions in the treated dye solution was quantified using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), with Ti-Ti treated solution having 14.20 mg/L concentration of Ti and Ti-Cu treated solution having 0.078 mg/L of Ti and 0.001 mg/L of Cu, respectively. Colour removal efficiency of 99.49% was obtained for both electrode sets, with a lower operating time and voltage for dissimilar metal combination. Ecotoxicity studies showed negligible toxicity of Ti-Cu treated dye samples compared to untreated solutions. Survival rate, protein estimation, and catalase activity was used to validate the treatment method's efficacy. The study found that the dissimilar electrode material exhibited reduced toxicity due to the presence of heavy metals below the permissible limit.


Assuntos
Eletrólise , Eletrodos , Corantes/química , Corantes/economia , Corantes/toxicidade , Eletrólise/métodos , Concentração de Íons de Hidrogênio , Espectrofotometria , Cromatografia Líquida de Alta Pressão , Animais , Peixe-Zebra , Titânio/química , Cobre/química
2.
Ecotoxicol Environ Saf ; 201: 110858, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32563161

RESUMO

This work presents the research on the treatment of an anthraquinone derivatives of disperse dye Blue SI from aqueous solution using aluminium for the optimization of operational parameters like pH, current density, addition of electrolyte, contact time for the color removal efficiency (CRE) and the results are compared with the performance of copper electrodes in electrocoagulation (EC). The parameters for maximum CRE was found with Al at current density 40 Am-2, time 10 min at pH 7, and for Cu at 60 Am-2 15 min, at pH 6 were optimized. The characterization of the treated water using HPLC, MS studies revealed intermediate compounds. From the XPS analysis of the sludge obtained, the mechanism of EC was deduced. Treated aqueous solution was studied for its phytotoxicity with Vigna radiata and ecotoxicity studies were conducted on Artemia salina to study the toxicity effect of the intermediatory products in the treated dye solution. Blue SI dye aqueous solution treated with aluminium electrodes shows no or lesser toxicity in plants as well as in ecotoxic study compared with copper electrodes.


Assuntos
Alumínio/química , Antraquinonas/análise , Cobre/química , Técnicas Eletroquímicas/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Animais , Antraquinonas/química , Antraquinonas/toxicidade , Artemia/efeitos dos fármacos , Eletrodos , Floculação , Concentração de Íons de Hidrogênio , Esgotos/química , Vigna/efeitos dos fármacos , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
3.
Int J Biol Macromol ; 257(Pt 2): 128550, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056737

RESUMO

Biopolymers are a naturally occurring alternative to synthetic polymers that are linked by covalent bonds, which includes cellular components such as proteins, nucleotides, lipids, and polysaccharides. Based on the extensive literature review it was found that chitosan, lignin, and cellulose were predominantly used in the energy and environmental sectors. Due to their vast array of qualities, including the adsorption, flocculation, anticoagulation, and furthermore, have made them useful for treating wastewater and pollutant removal. Chitosan and lignin have been used as a proton exchange membrane in the energy storage device of fuel cells. As these biopolymers develop strong coordination connections with metal surfaces, they act as an anticorrosive agent, which inhibiting the corrosion. Besides, there are a lot of recent developments in the application of biopolymers for energy and environmental fields. The present review provides a concise summary of recent developments in membrane-based biopolymers role in energy and environmental field. In addition, this review is drawn to a conclusion with a discussion of future trends in the real application of biopolymers in a variety of different industries, as well as the financial significance of these future trends.


Assuntos
Celulose , Quitosana , Celulose/química , Lignina/química , Quitosana/química , Biopolímeros/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA