Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38539927

RESUMO

The dairy industry is facing criticism for its role in exacerbating global GHG emissions, as climate change becomes an increasingly pressing issue. These emissions mostly originate from methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2). An optimal strategy involves the creation of an economical monitoring device to evaluate methane emissions from dairy animals. Livestock production systems encounter difficulties because of escalating food demand and environmental concerns. Enhancing animal productivity via nutrition, feeding management, reproduction, or genetics can result in a decrease in CH4 emissions per unit of meat or milk. This CH4 unit approach allows for a more accurate comparison of emissions across different animal production systems, considering variations in productivity. Expressing methane emissions per unit allows for easier comparison between different sources of emissions. Expressing emissions per unit (e.g., per cow) highlights the relative impact of these sources on the environment. By quantifying emissions on a per unit basis, it becomes easier to identify high-emission sources and target mitigation efforts accordingly. Many environmental policies and regulations focus on reducing emissions per unit of activity or output. By focusing on emissions per unit, policymakers and producers can work together to implement practices that lower emissions without sacrificing productivity. Expressing methane emissions in this way aligns with policy goals aimed at curbing overall greenhouse gas emissions. While it is true that total emissions affect the atmosphere globally, breaking down emissions per unit helps to understand the specific contributions of different activities and sectors to overall greenhouse gas emissions. Tackling cattle health issues can increase productivity, reduce GHG emissions, and improve animal welfare. Addressing livestock health issues can also provide favourable impacts on human health by reducing the prevalence of infectious illnesses in livestock, thereby mitigating the likelihood of zoonotic infections transmitting to humans. The progress in animal health offers the potential for a future in which the likelihood of animal diseases is reduced because of improved immunity, more effective preventative techniques, earlier identification, and innovative treatments. The primary objective of veterinary medicine is to eradicate clinical infectious diseases in small groups of animals. However, as the animal population grows, the emphasis shifts towards proactive treatment to tackle subclinical diseases and enhance production. Proactive treatment encompasses the consistent monitoring and implementation of preventive measures, such as vaccination and adherence to appropriate nutrition. Through the implementation of these measures, the livestock industry may enhance both animal well-being and mitigate the release of methane and nitrous oxide, thereby fostering environmental sustainability. In addition, advocating for sustainable farming methods and providing farmers with education on the significance of mitigating GHG emissions can bolster the industry's endeavours to tackle climate change and infectious illnesses. This will result in a more robust and environmentally sustainable agriculture industry. This review seeks to conduct a thorough examination of the correlation between the health condition of cattle, the composition of milk produced, and the emissions of methane gas. It aims to identify areas where research is lacking and to provide guidance for future scientific investigations, policy making, and industry practices. The goal is to address the difficulties associated with methane emissions in the cattle industry. The primary global health challenge is to identify the causative relationship between climate change and infectious illnesses. Reducing CH4 and N2O emissions from digestive fermentation and animal manure can be achieved by improving animal well-being and limiting disease and mortality.

2.
Animals (Basel) ; 14(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39272274

RESUMO

This study focused on assessing whether the inclusion of probiotics (B. subtilis) as feed additives during the preweaning stage can enhance the body weight and metabolic condition of neonatal calves. A total of 50 Holstein calves, all born on the same farm, were randomly divided into two homogeneous treatment groups after birth. The calves in the control group (CG) were fed a milk replacer (n = 25) (13 females and 12 males) and those in the B. subtilis-supplement-treated group (TG), (n = 25) (13 females and 12 males) were fed a milk replacer with 7.5 mL/calf/day of B. subtilis probiotic (complied with the manufacturer's guidelines). The probiotic was administered 24 h post-birth, signifying the start of the experimental period. It took one month to collect the animals. Body weight was measured at birth for all animals. A local veterinarian, working on the farm, conducted daily health checks of the calves, recording health parameters and any antibiotic treatments. Blood samples were collected from each calf at birth and 30, 60, and 90 days by puncturing the jugular vein using 10 mL evacuated serum tubes before morning feeding. Significant differences in body weight were observed between the CG and the TG at 30, 60, and 90 days of age. At 30 days, the TG had a 4.11% higher average body weight than the CG (54.38 kg vs. 52.71 kg). At 60 days, the TG's average weight was 3.75% higher (79.21 kg vs. 76.34 kg), and at 90 days, the TG had a 2.91% higher average weight (112.87 kg vs. 109.67 kg). At 30 days of age, the TG showed significantly lower AST activity, with a 41.12% decrease compared to the CG (51.02 IU/L vs. 72.00 IU/L). Conversely, GGT activity was significantly higher in the TG by 64.68% (40.64 IU/L vs. 14.35 IU/L). Phosphorus concentration at 30 days was also significantly higher in the TG by 9.36% (3.27 mmol/L vs. 2.99 mmol/L). Additionally, the TG had a significantly lower total protein concentration, with a 21.63% decrease at 30 days (46.32 g/L vs. 56.34 g/L) and a 20.28% decrease at 60 days (48.32 g/L vs. 58.12 g/L) compared to the CG. These findings indicate that dairy calves given conventional milk replacer along with a daily dose of 7.5 mL of B. subtilis probiotic experienced enhanced growth performance and a more favourable metabolic profile during the first 90 days of their lives.

3.
Animals (Basel) ; 14(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39199924

RESUMO

Heat stress (HS) is one of the key factors affecting an animal's immune system and productivity, as a result of a physiological reaction combined with environmental factors. This study examined the short-term effects of heat stress on cow behavior, as recorded by innovative technologies, and its impact on blood gas parameters, using 56 of the 1070 cows clinically evaluated during the second and subsequent lactations within the first 30 days postpartum. Throughout the experiment (from 4 June 2024 until 1 July 2024), cow behavior parameters (rumination time min/d. (RT), body temperature (°C), reticulorumen pH, water consumption (L/day), cow activity (h/day)) were monitored using specialized SmaXtec boluses and employing a blood gas analyzer (Siemens Healthineers, 1200 Courtneypark Dr E Mississauga, L5T 1P2, Canada). During the study period, the temperature-humidity index (THI), based on ambient temperature and humidity, was recorded and used to calculate THI and to categorize the data into four THI classes as follows: 1-THI 60-63 (4 June 2024-12 June 2024); 2-THI 65-69 (13 June 2024-18 June 2024); 3-THI 73-75 (19 June 2024-25 June 2024); and 4-THI 73-78 (26 June 2024-1 July 2024). The results showed that heat stress significantly reduced rumination time by up to 70% in cows within the highest THI class (73 to 78) and increased body temperature by 2%. It also caused a 12.6% decrease in partial carbon dioxide pressure (pCO2) and a 32% increase in partial oxygen pressure (pO2), also decreasing plasma sodium by 1.36% and potassium by 6%, while increasing chloride by 3%. The findings underscore the critical need for continuous monitoring, early detection, and proactive management to mitigate the adverse impacts of heat stress on dairy cow health and productivity. Recommendations include the use of advanced monitoring technologies and specific blood gas parameter tracking to detect the early signs of heat stress and implement more timely interventions.

4.
Animals (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338027

RESUMO

This study delves into the effects of subclinical ketosis (SCK) and subclinical acidosis (SCA) on various parameters related to dairy cow rumination, eating, drinking and locomotion behavior. The research hypothesized that these subclinical metabolic disorders could affect behaviors such as rumination, feeding, and locomotion. A total of 320 dairy cows, with a focus on those in their second or subsequent lactation, producing an average of 12,000 kg/year milk in their previous lactation, were examined. These cows were classified into three groups: those with SCK, those with SCA, and healthy cows. The health status of the cows was determined based on the milk fat-protein ratio, blood beta-hydroxybutyrate, and the results of clinical examinations performed by a veterinarian. The data collected during the study included parameters from the RumiWatch sensors. The results revealed significant differences between the cows affected by SCK and the healthy cows, with reductions observed in the rumination time (17.47%) and various eating and chewing behaviors. These changes indicated that SCK had a substantial impact on the cows' behavior. In the context of SCA, the study found significant reductions in Eating Time 2 (ET2) of 36.84% when compared to the healthy cows. Additionally, Eating Chews 2 (EC2) exhibited a significant reduction in the SCA group, with an average of 312.06 units (±17.93), compared to the healthy group's average of 504.20 units (±18.87). These findings emphasize that SCA influences feeding behaviors and chewing activity, which can have implications for nutrient intake and overall cow health. The study also highlights the considerable impact of SCK on locomotion parameters, as the cows with SCK exhibited a 27.36% reduction in the walking time levels. These cows also displayed reductions in the Walking Time (WT), Other Activity Time (OAT), and Activity Change (AC). In conclusion, this research underscores the critical need for advanced strategies to prevent and manage subclinical metabolic disorders within the dairy farming industry. The study findings have far-reaching implications for enhancing the well-being and performance of dairy cattle. Effective management practices and detection methods are essential to mitigate the impact of SCK and SCA on dairy cow health and productivity, ultimately benefiting the dairy farming sector.

5.
Animals (Basel) ; 14(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38539934

RESUMO

This study hypothesizes that higher in-line milk lactose concentrations are indicative of enhanced dairy cow behaviors-including increased rumination, feeding, and locomotion activities-reflecting superior overall health and well-being. It posits that fluctuations in milk lactose levels have a substantial impact on the physiological and behavioral responses of dairy cows, thereby affecting their milk yields and compositions. Each cow's milk lactose, fat, protein, and fat-to-protein ratio were continuously monitored using the BROLIS HerdLine in-line milk analyzer (Brolis Sensor Technology, Vilnius, Lithuania). The RumiWatch noseband sensor (RWS; ITIN + HOCH GmbH, Fütterungstechnik, Liestal, Switzerland) was employed to measure the biomarkers of the rumination, feeding, and locomotion behavior. The measurements were recorded over 5 days at the same time (during morning milking). A total of 502 cows were examined. During these 5 days, 2510 measurements were taken. Based on the lactose content in their milk, the cows were divided into two categories: the first group consisted of cows with milk lactose levels below 4.70%, while the second group included cows with milk lactose levels of 4.70% or higher. Our study showed that cows with higher milk lactose concentrations (≥4.70%) produced significantly more milk (16.14% increase) but had a lower milk protein concentration (5.05% decrease) compared to cows with lower lactose levels. These cows also exhibited changes in rumination and feeding behaviors, as recorded by the RWS: there was an increase in the mastication and rumination behaviors, evidenced by a 14.09% rise in other chews and a 13.84% increase in rumination chews, along with a 16.70% boost in bolus activity. However, there was a notable 16.18% reduction in their physical activity, as measured by the change in time spent walking.

6.
Animals (Basel) ; 14(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38672317

RESUMO

This study hypothesizes that heat stress adversely affects dairy cows, resulting in reduced rumination, altering eating and drinking behaviors, changes in their locomotory patterns, and significant variations in their acid-base balance. The aim of this study was to investigate the impacts of heat stress on rumination, drinking, and locomotory behavior, as registered by innovative technologies, and acid-base balance in fresh multiparous dairy cows. This study was conducted during the summer, from 15 June to 8 July 2023, on a Lithuanian commercial dairy farm. We assessed 350 German Holstein cows that produced an average of 11,400 kg of milk annually throughout their second and subsequent lactation periods. We used the temperature-humidity index (THI) to divide the cows under investigation into three periods: I. high HS-THI >78 (period: 15-23 June 2023); II. medium HS-THI 72-78 (period: 24-30 June 2023); and III. low HS-THI <72 (period: 1-8 July 2023). The appropriate RumiWatch sensor (RWS) parameters were assessed between 15 June 2023 and 8 July 2023. Cows were acclimatized to the rumination, drinking, and locomotory behavior parameters during the adaptation period (1-30 June 2023). The registration process started on 15 June 2023 and terminated on 8 July 2023 and was performed every hour during the 24 h day. The acid-base balance was recorded from 15 June 2023 until 8 July 2023, once per week. The cows' activity increased by 11.75% in the high HS period compared to the low HS period (p < 0.01); high mean differences were detected for rumination, which was 17.67% higher in the high HS period and 13.80% higher in the medium HS period compared to the low HS period (p < 0.01); and the change in activity was 12.82% higher in the low HS compared to the medium HS period (p < 0.01). Cows under high HS had higher blood urea nitrogen (BUN) levels compared with cows under medium HS (p < 0.01). The observed alterations in the rumination, drinking, and locomotory behaviors, in addition to the acid-base balance, highlight the multifaceted impacts of varying heat stress on the physiological and behavioral responses of dairy cows. This suggests that the utilization of advanced technologies may assist dairy farmers in effectively monitoring and controlling heat stress in cows. Additionally, regularly assessing blood urea nitrogen levels can enable farmers to modify their feeding practices, thus promoting optimal cow well-being and productivity.

7.
Animals (Basel) ; 14(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38997995

RESUMO

The hypothesis of this study was that there were changes in biomarkers registered by innovative technologies in cows with subclinical acidosis. The aim of this study was to identify changes in the in-line milk fat-to-protein ratio and cow feeding behaviors such as reticulorumen pH, reticulorumen temperature, cow activity, and water intake with subclinical acidosis. From a total of 98 cows, 59 cows were selected to meet the following criteria (2 or more lactations, with 31 days in milk (DIM)). The selected animals were separated into two groups based on general clinical examination and reticulorumen pH: the subclinical acidosis group (SCA, n = 23) and the healthy group (HC, n = 36). During the diagnosis of subclinical acidosis and following the clinical examination of the healthy group using the BROLIS HerdLine system, the daily averages of milk yield (kg/day), milk fat (%), milk protein (%), and the milk fat-to-protein ratio were recorded. Simultaneously, by using Smaxtec technology, reticulorumen parameters and cow activity, including pH, temperature (°C), rumination time (minutes/day), and water intake (hours/day), were registered. Changes in parameters measured using innovative technologies were able to identify cows with subclinical acidosis. Cows with subclinical acidosis had a lower reticulorumen pH by 18.8% (p < 0.0001), a decreased milk yield by 10.49% (p < 0.001), a lower milk fat-to-protein ratio by 11.88% (p < 0.01), and a decreased rumination time by 6.59% (p < 0.01). However, the activity of these cows was higher by 57.19% (p < 0.001) compared to healthy cows. From a practical point of view, we suggest that veterinarians and farmers track parameters such as reticulorumen pH, milk yield, milk fat-to-protein ratio, rumination time, and activity for the identification of subclinical acidosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA