Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS Pathog ; 20(5): e1012176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709846

RESUMO

Magnaporthe AVRs and ToxB-like (MAX) effectors constitute a family of secreted virulence proteins in the fungus Pyricularia oryzae (syn. Magnaporthe oryzae), which causes blast disease on numerous cereals and grasses. In spite of high sequence divergence, MAX effectors share a common fold characterized by a ß-sandwich core stabilized by a conserved disulfide bond. In this study, we investigated the structural landscape and diversity within the MAX effector repertoire of P. oryzae. Combining experimental protein structure determination and in silico structure modeling we validated the presence of the conserved MAX effector core domain in 77 out of 94 groups of orthologs (OG) identified in a previous population genomic study. Four novel MAX effector structures determined by NMR were in remarkably good agreement with AlphaFold2 (AF2) predictions. Based on the comparison of the AF2-generated 3D models we propose a classification of the MAX effectors superfamily in 20 structural groups that vary in the canonical MAX fold, disulfide bond patterns, and additional secondary structures in N- and C-terminal extensions. About one-third of the MAX family members remain singletons, without strong structural relationship to other MAX effectors. Analysis of the surface properties of the AF2 MAX models also highlights the high variability within the MAX family at the structural level, potentially reflecting the wide diversity of their virulence functions and host targets.


Assuntos
Ascomicetos , Proteínas Fúngicas , Doenças das Plantas , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia , Modelos Moleculares , Conformação Proteica , Virulência , Fatores de Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Sequência de Aminoácidos
2.
PLoS Pathog ; 20(1): e1011945, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252628

RESUMO

The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes. This phenotype suggests that BIP1 is not implicated in the differentiation of the penetration peg but is necessary for the initial establishment of the fungus within plant cells. BIP1 expression was restricted to the appressorium by both transcriptional and post-transcriptional control. Genome-wide transcriptome analysis showed that 40 genes were down regulated in a BIP1 deletion mutant. Most of these genes were specifically expressed in the appressorium. They encode proteins with pathogenesis-related functions such as enzymes involved in secondary metabolism including those encoded by the ACE1 gene cluster, small secreted proteins such as SLP2, BAS2, BAS3, and AVR-Pi9 effectors, as well as plant cuticle and cell wall degrading enzymes. Interestingly, this BIP1 network is different from other known infection-related regulatory networks, highlighting the complexity of gene expression control during plant-fungal interactions. Promoters of BIP1-regulated genes shared a GCN4/bZIP-binding DNA motif (TGACTC) binding in vitro to BIP1. Mutation of this motif in the promoter of MGG_08381.7 from the ACE1 gene cluster abolished its appressorium-specific expression, showing that BIP1 behaves as a transcriptional activator. In summary, our findings demonstrate that BIP1 is critical for the expression of early invasion-related genes in appressoria. These genes are likely needed for biotrophic invasion of the first infected host cell, but not for the penetration process itself. Through these mechanisms, the blast fungus strategically anticipates the host plant environment and responses during appressorium-mediated penetration.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Oryza/microbiologia , Magnaporthe/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica
3.
PLoS Pathog ; 19(9): e1011294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695773

RESUMO

Plant pathogens secrete proteins called effectors that target host cellular processes to promote disease. Recently, structural genomics has identified several families of fungal effectors that share a similar three-dimensional structure despite remarkably variable amino-acid sequences and surface properties. To explore the selective forces that underlie the sequence variability of structurally-analogous effectors, we focused on MAX effectors, a structural family of effectors that are major determinants of virulence in the rice blast fungus Pyricularia oryzae. Using structure-informed gene annotation, we identified 58 to 78 MAX effector genes per genome in a set of 120 isolates representing seven host-associated lineages. The expression of MAX effector genes was primarily restricted to the early biotrophic phase of infection and strongly influenced by the host plant. Pangenome analyses of MAX effectors demonstrated extensive presence/absence polymorphism and identified gene loss events possibly involved in host range adaptation. However, gene knock-in experiments did not reveal a strong effect on virulence phenotypes suggesting that other evolutionary mechanisms are the main drivers of MAX effector losses. MAX effectors displayed high levels of standing variation and high rates of non-synonymous substitutions, pointing to widespread positive selection shaping the molecular diversity of MAX effectors. The combination of these analyses with structural data revealed that positive selection acts mostly on residues located in particular structural elements and at specific positions. By providing a comprehensive catalog of amino acid polymorphism, and by identifying the structural determinants of the sequence diversity, our work will inform future studies aimed at elucidating the function and mode of action of MAX effectors.


Assuntos
Aminoácidos , Ascomicetos , Virulência/genética , Sequência de Aminoácidos , Ascomicetos/genética
4.
Plant J ; 115(5): 1345-1356, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248636

RESUMO

Receptor-like cytoplasmic kinases (RLCKs) mediate the intracellular signaling downstream of pattern-recognition receptors (PRRs). Several RLCKs from subfamily VII of rice (Oryza sativa) have important roles in plant immunity, but the role of RLCK VII-4 in pattern-triggered immune (PTI) signaling and resistance to pathogens has not yet been investigated. Here, we generated by multiplex clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated genome editing rice sextuple mutant lines where the entire RLCK VII-4 subfamily is inactivated and then analyzed the resulting lines for their response to chitin and flg22 and for their immunity to Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae. Analysis of the rlckvii-4 mutants revealed that they have an impaired reactive oxygen system burst and reduced defense gene expression in response to flg22 and chitin. This indicates that members of the rice RLCK VII-4 subfamily are required for immune signaling downstream of multiple PRRs. Furthermore, we found that the rice RLCK VII-4 subfamily is important for chitin-induced callose deposition and mitogen-activated protein kinase activation and that it is crucial for basal resistance against Xoo and M. oryzae pathogens. This establishes that the RLCK VII-4 subfamily has critical functions in the regulation of multiple PTI pathways in rice and opens the way for deciphering the precise role of its members in the control of rice PTI.


Assuntos
Oryza , Xanthomonas , Oryza/metabolismo , Reconhecimento da Imunidade Inata , Imunidade Vegetal/genética , Transdução de Sinais , Xanthomonas/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Quitina/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
5.
PLoS Pathog ; 18(7): e1010687, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877779

RESUMO

Many species of fungal plant pathogens coexist as multiple lineages on the same host, but the factors underlying the origin and maintenance of population structure remain largely unknown. The rice blast fungus Pyricularia oryzae is a widespread model plant pathogen displaying population subdivision. However, most studies of natural variation in P. oryzae have been limited in genomic or geographic resolution, and host adaptation is the only factor that has been investigated extensively as a contributor to population subdivision. In an effort to complement previous studies, we analyzed genetic and phenotypic diversity in isolates of the rice blast fungus covering a broad geographical range. Using single-nucleotide polymorphism genotyping data for 886 isolates sampled from 152 sites in 51 countries, we showed that population subdivision of P. oryzae in one recombining and three clonal lineages with broad distributions persisted with deeper sampling. We also extended previous findings by showing further population subdivision of the recombining lineage into one international and three Asian clusters, and by providing evidence that the three clonal lineages of P. oryzae were found in areas with different prevailing environmental conditions, indicating niche separation. Pathogenicity tests and bioinformatic analyses using an extended set of isolates and rice varieties indicated that partial specialization to rice subgroups contributed to niche separation between lineages, and differences in repertoires of putative virulence effectors were consistent with differences in host range. Experimental crosses revealed that female sterility and early post-mating genetic incompatibilities acted as strong additional barriers to gene flow between clonal lineages. Our results demonstrate that the spread of a fungal pathogen across heterogeneous habitats and divergent populations of a crop species can lead to niche separation and reproductive isolation between distinct, widely distributed, lineages.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Variação Genética , Magnaporthe/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia
7.
New Phytol ; 237(3): 900-913, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36229931

RESUMO

Viral diseases are a major limitation for crop production, and their control is crucial for sustainable food supply. We investigated by a combination of functional genetics and experimental evolution the resistance of rice to the rice yellow mottle virus (RYMV), which is among the most devastating rice pathogens in Africa, and the mechanisms underlying the extremely fast adaptation of the virus to its host. We found that the RYMV3 gene that protects rice against the virus codes for a nucleotide-binding and leucine-rich repeat domain immune receptor (NLRs) from the Mla-like clade of NLRs. RYMV3 detects the virus by forming a recognition complex with the viral coat protein (CP). The virus escapes efficiently from detection by mutations in its CP, some of which interfere with the formation of the recognition complex. This study establishes that NLRs also confer in monocotyledonous plants immunity to viruses, and reveals an unexpected functional diversity for NLRs of the Mla clade that were previously only known as fungal disease resistance proteins. In addition, it provides precise insight into the mechanisms by which viruses adapt to plant immunity and gives important knowledge for the development of sustainable resistance against viral diseases of cereals.


Assuntos
Oryza , Vírus de RNA , Viroses , Leucina , Vírus de RNA/metabolismo , Nucleotídeos , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas NLR/metabolismo
8.
Molecules ; 28(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630320

RESUMO

Does a similar 3D structure mean a similar folding pathway? This question is particularly meaningful when it concerns proteins sharing a similar 3D structure, but low sequence identity or homology. MAX effectors secreted by the phytopathogenic fungus Magnaporthe oryzae present such characteristics. They share a common 3D structure, a ß-sandwich with the same topology for all the family members, but an extremely low sequence identity/homology. In a previous study, we have investigated the folding of two MAX effectors, AVR-Pia and AVR-Pib, using High-Hydrostatic-Pressure NMR and found that they display a similar folding pathway, with a common folding intermediate. In the present work, we used a similar strategy to investigate the folding conformational landscape of another MAX effector, MAX60, and found a very different folding intermediate. Our analysis strongly supports that the presence of a C-terminal α-helical extension in the 3D structure of MAX60 could be responsible for its different folding pathway.


Assuntos
Ascomicetos , Transporte Biológico , Pressão Hidrostática , Dobramento de Proteína , Proteínas Fúngicas
9.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628267

RESUMO

Despite advances in experimental and computational methods, the mechanisms by which an unstructured polypeptide chain regains its unique three-dimensional structure remains one of the main puzzling questions in biology. Single-molecule techniques, ultra-fast perturbation and detection approaches and improvement in all-atom and coarse-grained simulation methods have greatly deepened our understanding of protein folding and the effects of environmental factors on folding landscape. However, a major challenge remains the detailed characterization of the protein folding landscape. Here, we used high hydrostatic pressure 2D NMR spectroscopy to obtain high-resolution experimental structural information in a site-specific manner across the polypeptide sequence and along the folding reaction coordinate. We used this residue-specific information to constrain Cyana3 calculations, in order to obtain a topological description of the entire folding landscape. This approach was used to describe the conformers populating the folding landscape of two small globular proteins, AVR-Pia and AVR-Pib, that belong to the structurally conserved but sequence-unrelated MAX effectors superfamily. Comparing the two folding landscapes, we found that, in spite of their divergent sequences, the folding pathway of these two proteins involves a similar, inescapable, folding intermediate, even if, statistically, the routes used are different.


Assuntos
Ascomicetos , Dobramento de Proteína , Espectroscopia de Ressonância Magnética , Proteínas/química
10.
Proc Natl Acad Sci U S A ; 115(45): 11637-11642, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30355769

RESUMO

The structurally conserved but sequence-unrelated MAX (Magnaporthe oryzae avirulence and ToxB-like) effectors AVR1-CO39 and AVR-PikD from the blast fungus M. oryzae are recognized by the rice nucleotide-binding domain and leucine-rich repeat proteins (NLRs) RGA5 and Pikp-1, respectively. This involves, in both cases, direct interaction of the effector with a heavy metal-associated (HMA) integrated domain (ID) in the NLR. Here, we solved the crystal structures of a C-terminal fragment of RGA5 carrying the HMA ID (RGA5_S), alone, and in complex with AVR1-CO39 and compared it to the structure of the Pikp1HMA/AVR-PikD complex. In both complexes, HMA ID/MAX effector interactions involve antiparallel alignment of ß-sheets from each partner. However, effector-binding occurs at different surfaces in Pikp1HMA and RGA5HMA, indicating that these interactions evolved independently by convergence of these two MAX effectors to the same type of plant target proteins. Interestingly, the effector-binding surface in RGA5HMA overlaps with the surface that mediates RGA5HMA self-interaction. Mutations in the HMA-binding interface of AVR1-CO39 perturb RGA5HMA-binding, in vitro and in vivo, and affect the recognition of M. oryzae in a rice cultivar containing Pi-CO39 Our study provides detailed insight into the mechanisms of effector recognition by NLRs, which has substantial implications for future engineering of NLRs to expand their recognition specificities. In addition, we propose, as a hypothesis for the understanding of effector diversity, that in the structurally conserved MAX effectors the molecular mechanism of host target protein-binding is conserved rather than the host target proteins themselves.


Assuntos
Proteínas Fúngicas/química , Magnaporthe/genética , Proteínas NLR/química , Oryza/imunologia , Proteínas de Plantas/química , Fatores de Virulência/química , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Magnaporthe/patogenicidade , Modelos Moleculares , Proteínas NLR/genética , Proteínas NLR/imunologia , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
Plant Cell ; 29(1): 156-168, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087830

RESUMO

Nucleotide binding domain and leucine-rich repeat proteins (NLRs) are important receptors in plant immunity that allow recognition of pathogen effectors. The rice (Oryza sativa) NLR RGA5 recognizes the Magnaporthe oryzae effector AVR-Pia through direct interaction. Here, we gained detailed insights into the molecular and structural bases of AVR-Pia-RGA5 interaction and the role of the RATX1 decoy domain of RGA5. NMR titration combined with in vitro and in vivo protein-protein interaction analyses identified the AVR-Pia interaction surface that binds to the RATX1 domain. Structure-informed AVR-Pia mutants showed that, although AVR-Pia associates with additional sites in RGA5, binding to the RATX1 domain is necessary for pathogen recognition but can be of moderate affinity. Therefore, RGA5-mediated resistance is highly resilient to mutations in the effector. We propose a model that explains such robust effector recognition as a consequence, and an advantage, of the combination of integrated decoy domains with additional independent effector-NLR interactions.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Sítios de Ligação/genética , Resistência à Doença/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Magnaporthe/genética , Magnaporthe/fisiologia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Domínios Proteicos , Receptores Imunológicos/química , Receptores Imunológicos/genética
12.
EMBO J ; 33(17): 1941-59, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25024433

RESUMO

Plant resistance proteins of the class of nucleotide-binding and leucine-rich repeat domain proteins (NB-LRRs) are immune sensors which recognize pathogen-derived molecules termed avirulence (AVR) proteins. We show that RGA4 and RGA5, two NB-LRRs from rice, interact functionally and physically to mediate resistance to the fungal pathogen Magnaporthe oryzae and accomplish different functions in AVR recognition. RGA4 triggers an AVR-independent cell death that is repressed in the presence of RGA5 in both rice protoplasts and Nicotiana benthamiana. Upon recognition of the pathogen effector AVR-Pia by direct binding to RGA5, repression is relieved and cell death occurs. RGA4 and RGA5 form homo- and hetero-complexes and interact through their coiled-coil domains. Localization studies in rice protoplast suggest that RGA4 and RGA5 localize to the cytosol. Upon recognition of AVR-Pia, neither RGA4 nor RGA5 is re-localized to the nucleus. These results establish a model for the interaction of hetero-pairs of NB-LRRs in plants: RGA4 mediates cell death activation, while RGA5 acts as a repressor of RGA4 and as an AVR receptor.


Assuntos
Resistência à Doença , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/imunologia , Oryza/imunologia , Oryza/microbiologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Morte Celular , Modelos Biológicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Protoplastos/fisiologia , Nicotiana/imunologia , Nicotiana/microbiologia
13.
PLoS Pathog ; 12(2): e1005457, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26900703

RESUMO

Plants produce cytokinin (CK) hormones for controlling key developmental processes like source/sink distribution, cell division or programmed cell-death. Some plant pathogens have been shown to produce CKs but the function of this mimicry production by non-tumor inducing pathogens, has yet to be established. Here we identify a gene required for CK biosynthesis, CKS1, in the rice blast fungus Magnaporthe oryzae. The fungal-secreted CKs are likely perceived by the plant during infection since the transcriptional regulation of rice CK-responsive genes is altered in plants infected by the mutants in which CKS1 gene was deleted. Although cks1 mutants showed normal in vitro growth and development, they were severely affected for in planta growth and virulence. Moreover, we showed that the cks1 mutant triggered enhanced induction of plant defenses as manifested by an elevated oxidative burst and expression of defense-related markers. In addition, the contents of sugars and key amino acids for fungal growth were altered in and around the infection site by the cks1 mutant in a different manner than by the control strain. These results suggest that fungal-derived CKs are key effectors required for dampening host defenses and affecting sugar and amino acid distribution in and around the infection site.


Assuntos
Citocininas/genética , Regulação da Expressão Gênica de Plantas/genética , Genes Fúngicos/genética , Oryza/microbiologia , Virulência/genética , Citocininas/biossíntese , Magnaporthe/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia
14.
Plant J ; 88(1): 43-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27289079

RESUMO

Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes.


Assuntos
Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Magnaporthe/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Regiões Promotoras Genéticas/genética , Xanthomonas/patogenicidade
15.
PLoS Pathog ; 11(10): e1005228, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506000

RESUMO

Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 ß-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.


Assuntos
Ascomicetos/química , Sequência de Aminoácidos , Ascomicetos/patogenicidade , Proteínas Fúngicas/química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Secundária de Proteína
16.
BMC Plant Biol ; 16: 17, 2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26772971

RESUMO

BACKGROUND: Receptor-like kinases are well-known to play key roles in disease resistance. Among them, the Wall-associated kinases (WAKs) have been shown to be positive regulators of fungal disease resistance in several plant species. WAK genes are often transcriptionally regulated during infection but the pathways involved in this regulation are not known. In rice, the OsWAK gene family is significantly amplified compared to Arabidopsis. The possibility that several WAKs participate in different ways to basal defense has not been addressed. Moreover, the direct requirement of rice OSWAK genes in regulating defense has not been explored. RESULTS: Here we show using rice (Oryza sativa) loss-of-function mutants of four selected OsWAK genes, that individual OsWAKs are required for quantitative resistance to the rice blast fungus, Magnaporthe oryzae. While OsWAK14, OsWAK91 and OsWAK92 positively regulate quantitative resistance, OsWAK112d is a negative regulator of blast resistance. In addition, we show that the very early transcriptional regulation of the rice OsWAK genes is triggered by chitin and is partially under the control of the chitin receptor CEBiP. Finally, we show that OsWAK91 is required for H2O2 production and sufficient to enhance defense gene expression during infection. CONCLUSIONS: We conclude that the rice OsWAK genes studied are part of basal defense response, potentially mediated by chitin from fungal cell walls. This work also shows that some OsWAKs, like OsWAK112d, may act as negative regulators of disease resistance.


Assuntos
Magnaporthe/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oryza/enzimologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Parede Celular/enzimologia , Quitina/imunologia , Expressão Gênica , Genes de Plantas , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Oryza/genética , Oryza/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética
17.
New Phytol ; 210(2): 618-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26848538

RESUMO

Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system.


Assuntos
Imunidade Vegetal , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Clonagem Molecular , Resistência à Doença , Genoma de Planta , Proteínas NLR/química , Proteínas NLR/metabolismo , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Domínios Proteicos , Zea mays/genética , Zea mays/microbiologia
18.
Plant Cell ; 25(4): 1463-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23548743

RESUMO

Resistance (R) proteins recognize pathogen avirulence (Avr) proteins by direct or indirect binding and are multidomain proteins generally carrying a nucleotide binding (NB) and a leucine-rich repeat (LRR) domain. Two NB-LRR protein-coding genes from rice (Oryza sativa), RGA4 and RGA5, were found to be required for the recognition of the Magnaporthe oryzae effector AVR1-CO39. RGA4 and RGA5 also mediate recognition of the unrelated M. oryzae effector AVR-Pia, indicating that the corresponding R proteins possess dual recognition specificity. For RGA5, two alternative transcripts, RGA5-A and RGA5-B, were identified. Genetic analysis showed that only RGA5-A confers resistance, while RGA5-B is inactive. Yeast two-hybrid, coimmunoprecipitation, and fluorescence resonance energy transfer-fluorescence lifetime imaging experiments revealed direct binding of AVR-Pia and AVR1-CO39 to RGA5-A, providing evidence for the recognition of multiple Avr proteins by direct binding to a single R protein. Direct binding seems to be required for resistance as an inactive AVR-Pia allele did not bind RGA5-A. A small Avr interaction domain with homology to the Avr recognition domain in the rice R protein Pik-1 was identified in the C terminus of RGA5-A. This reveals a mode of Avr protein recognition through direct binding to a novel, non-LRR interaction domain.


Assuntos
Proteínas Fúngicas/genética , Magnaporthe/genética , Oryza/genética , Proteínas de Plantas/genética , Processamento Alternativo , Sequência de Aminoácidos , Sítios de Ligação/genética , Resistência à Doença/genética , Transferência Ressonante de Energia de Fluorescência , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Immunoblotting , Magnaporthe/metabolismo , Magnaporthe/fisiologia , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Técnicas do Sistema de Duplo-Híbrido
19.
Plant Cell Rep ; 35(5): 1169-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26883226

RESUMO

KEY MESSAGE: Adapted pathogens are able to modulate cell responses of their hosts most likely due to the activity of secreted effector molecules thereby enabling colonisation by ostensible nonhost pathogens. It is postulated that host and nonhost pathogens of a given plant species differ in their repertoire of secreted effector molecules that are able to suppress plant resistance. We pursued the strategy of identifying novel effectors of Magnaporthe oryzae, the causal agent of blast disease, by comparing the infection process of closely related host vs. nonhost Magnaporthe species on barley (Hordeum vulgare L.). When both types of pathogen simultaneously attacked the same cell, the nonhost isolate became a successful pathogen possibly due to potent effectors secreted by the host isolate. Microarray studies led to a set of M. oryzae Hypothetical Effector Genes (MoHEGs) which were classified as Early- and LateMoHEGs according to the maximal transcript abundance during colonization of barley. Interestingly, orthologs of these MoHEGs from a nonhost pathogen were similarly regulated when investigated in a host situation, suggesting evolutionary conserved functions. Knockout mutants of MoHEG16 from the group of EarlyMoHEGs were less virulent on barley and microscopic studies revealed an attenuated transition from epidermal to mesophyll colonization. MoHEG13, a LateMoHEG, was shown to antagonize cell death induced by M. oryzae Necrosis-and ethylene-inducing-protein-1 (Nep1)-like proteins in Nicotiana benthamiana. MoHEG13 has a virulence function as a knockout mutant showed attenuated disease progression when inoculated on barley.


Assuntos
Proteínas Fúngicas/metabolismo , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Magnaporthe/fisiologia , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Morte Celular , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Genes Reporter , Hordeum/citologia , Hordeum/fisiologia , Especificidade de Hospedeiro , Magnaporthe/patogenicidade , Células do Mesofilo/microbiologia , Células do Mesofilo/fisiologia , Mutação , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Serina Endopeptidases , Nicotiana/citologia , Nicotiana/fisiologia , Virulência
20.
PLoS Genet ; 9(9): e1003766, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068949

RESUMO

The failure of gene-for-gene resistance traits to provide durable and broad-spectrum resistance in an agricultural context has led to the search for genes underlying quantitative resistance in plants. Such genes have been identified in only a few cases, all for fungal or nematode resistance, and encode diverse molecular functions. However, an understanding of the molecular mechanisms of quantitative resistance variation to other enemies and the associated evolutionary forces shaping this variation remain largely unknown. We report the identification, map-based cloning and functional validation of QRX3 (RKS1, Resistance related KinaSe 1), conferring broad-spectrum resistance to Xanthomonas campestris (Xc), a devastating worldwide bacterial vascular pathogen of crucifers. RKS1 encodes an atypical kinase that mediates a quantitative resistance mechanism in plants by restricting bacterial spread from the infection site. Nested Genome-Wide Association mapping revealed a major locus corresponding to an allelic series at RKS1 at the species level. An association between variation in resistance and RKS1 transcription was found using various transgenic lines as well as in natural accessions, suggesting that regulation of RKS1 expression is a major component of quantitative resistance to Xc. The co-existence of long lived RKS1 haplotypes in A. thaliana is shared with a variety of genes involved in pathogen recognition, suggesting common selective pressures. The identification of RKS1 constitutes a starting point for deciphering the mechanisms underlying broad spectrum quantitative disease resistance that is effective against a devastating and vascular crop pathogen. Because putative RKS1 orthologous have been found in other Brassica species, RKS1 provides an exciting opportunity for plant breeders to improve resistance to black rot in crops.


Assuntos
Arabidopsis/genética , Resistência à Doença/genética , Imunidade Inata , Fosfotransferases/genética , Doenças das Plantas/genética , Alelos , Arabidopsis/imunologia , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA