Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 147, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320968

RESUMO

BACKGROUND: Copy number variants (CNVs) linked to genes involved in nervous system development or function are often associated with neuropsychiatric disease. While CNVs involving deletions generally cause severe and highly penetrant patient phenotypes, CNVs leading to duplications tend instead to exhibit widely variable and less penetrant phenotypic expressivity among affected individuals. CNVs located on chromosome 15q13.3 affecting the alpha-7 nicotinic acetylcholine receptor subunit (CHRNA7) gene contribute to multiple neuropsychiatric disorders with highly variable penetrance. However, the basis of such differential penetrance remains uncharacterized. Here, we generated induced pluripotent stem cell (iPSC) models from first-degree relatives with a 15q13.3 duplication and analyzed their cellular phenotypes to uncover a basis for the dissimilar phenotypic expressivity. RESULTS: The first-degree relatives studied included a boy with autism and emotional dysregulation (the affected proband-AP) and his clinically unaffected mother (UM), with comparison to unrelated control models lacking this duplication. Potential contributors to neuropsychiatric impairment were modeled in iPSC-derived cortical excitatory and inhibitory neurons. The AP-derived model uniquely exhibited disruptions of cellular physiology and neurodevelopment not observed in either the UM or unrelated controls. These included enhanced neural progenitor proliferation but impaired neuronal differentiation, maturation, and migration, and increased endoplasmic reticulum (ER) stress. Both the neuronal migration deficit and elevated ER stress could be selectively rescued by different pharmacologic agents. Neuronal gene expression was also dysregulated in the AP, including reduced expression of genes related to behavior, psychological disorders, neuritogenesis, neuronal migration, and Wnt, axonal guidance, and GABA receptor signaling. The UM model instead exhibited upregulated expression of genes in many of these same pathways, suggesting that molecular compensation could have contributed to the lack of neurodevelopmental phenotypes in this model. However, both AP- and UM-derived neurons exhibited shared alterations of neuronal function, including increased action potential firing and elevated cholinergic activity, consistent with increased homomeric CHRNA7 channel activity. CONCLUSIONS: These data define both diagnosis-associated cellular phenotypes and shared functional anomalies related to CHRNA7 duplication that may contribute to variable phenotypic penetrance in individuals with 15q13.3 duplication. The capacity for pharmacological agents to rescue some neurodevelopmental anomalies associated with diagnosis suggests avenues for intervention for carriers of this duplication and other CNVs that cause related disorders.


Assuntos
Cromossomos Humanos Par 15 , Variações do Número de Cópias de DNA , Receptor Nicotínico de Acetilcolina alfa7/genética , Cromossomos Humanos Par 15/genética , Humanos , Masculino , Neurônios , Fenótipo
2.
Dev Biol ; 464(1): 11-23, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450229

RESUMO

Development of the complex structure of the vertebrate limb requires carefully orchestrated interactions between multiple regulatory pathways and proteins. Among these, precise regulation of 5' Hox transcription factor expression is essential for proper limb bud patterning and elaboration of distinct limb skeletal elements. Here, we identified Geminin (Gmnn) as a novel regulator of this process. A conditional model of Gmnn deficiency resulted in loss or severe reduction of forelimb skeletal elements, while both the forelimb autopod and hindlimb were unaffected. 5' Hox gene expression expanded into more proximal and anterior regions of the embryonic forelimb buds in this Gmnn-deficient model. A second conditional model of Gmnn deficiency instead caused a similar but less severe reduction of hindlimb skeletal elements and hindlimb polydactyly, while not affecting the forelimb. An ectopic posterior SHH signaling center was evident in the anterior hindlimb bud of Gmnn-deficient embryos in this model. This center ectopically expressed Hoxd13, the HOXD13 target Shh, and the SHH target Ptch1, while these mutant hindlimb buds also had reduced levels of the cleaved, repressor form of GLI3, a SHH pathway antagonist. Together, this work delineates a new role for Gmnn in modulating Hox expression to pattern the vertebrate limb.


Assuntos
Embrião de Mamíferos/embriologia , Geminina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/embriologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Embrião de Mamíferos/citologia , Geminina/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Membro Posterior/citologia , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Fatores de Transcrição/genética
3.
Proc Natl Acad Sci U S A ; 114(52): E11180-E11189, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229852

RESUMO

Cortical interneurons (cINs) modulate excitatory neuronal activity by providing local inhibition. During fetal development, several cIN subtypes derive from the medial ganglionic eminence (MGE), a transient ventral telencephalic structure. While altered cIN development contributes to neurodevelopmental disorders, the inaccessibility of human fetal brain tissue during development has hampered efforts to define molecular networks controlling this process. Here, we modified protocols for directed differentiation of human embryonic stem cells, obtaining efficient, accelerated production of MGE-like progenitors and MGE-derived cIN subtypes with the expected electrophysiological properties. We defined transcriptome changes accompanying this process and integrated these data with direct transcriptional targets of NKX2-1, a transcription factor controlling MGE specification. This analysis defined NKX2-1-associated genes with enriched expression during MGE specification and cIN differentiation, including known and previously unreported transcription factor targets with likely roles in MGE specification, and other target classes regulating cIN migration and function. NKX2-1-associated peaks were enriched for consensus binding motifs for NKX2-1, LHX, and SOX transcription factors, suggesting roles in coregulating MGE gene expression. Among the NKX2-1 direct target genes with cIN-enriched expression was CHD2, which encodes a chromatin remodeling protein mutated to cause human epilepsies. Accordingly, CHD2 deficiency impaired cIN specification and altered later electrophysiological function, while CHD2 coassociated with NKX2-1 at cis-regulatory elements and was required for their transactivation by NKX2-1 in MGE-like progenitors. This analysis identified several aspects of gene-regulatory networks underlying human MGE specification and suggested mechanisms by which NKX2-1 acts with chromatin remodeling activities to regulate gene expression programs underlying cIN development.


Assuntos
Diferenciação Celular , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Interneurônios/metabolismo , Linhagem Celular , Córtex Cerebral/citologia , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias Humanas/citologia , Humanos , Interneurônios/citologia , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo
4.
Dev Biol ; 393(1): 44-56, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24995796

RESUMO

Geminin is a nucleoprotein that can directly bind chromatin regulatory complexes to modulate gene expression during development. Geminin knockout mouse embryos are preimplantation lethal by the 32-cell stage, precluding in vivo study of Geminin's role in neural development. Therefore, here we used a conditional Geminin allele in combination with several Cre-driver lines to define an essential role for Geminin during mammalian neural tube (NT) formation and patterning. Geminin was required in the NT within a critical developmental time window (embryonic day 8.5-10.5), when NT patterning and closure occurs. Geminin excision at these stages resulted in strongly diminished expression of genes that mark and promote dorsal NT identities and decreased differentiation of ventral motor neurons, resulting in completely penetrant NT defects, while excision after embryonic day 10.5 did not result in NT defects. When Geminin was deleted specifically in the spinal NT, both NT defects and axial skeleton defects were observed, but neither defect occurred when Geminin was excised in paraxial mesenchyme, indicating a tissue autonomous requirement for Geminin in developing neuroectoderm. Despite a potential role for Geminin in cell cycle control, we found no evidence of proliferation defects or altered apoptosis. Comparisons of gene expression in the NT of Geminin mutant versus wild-type siblings at embryonic day 10.5 revealed decreased expression of key regulators of neurogenesis, including neurogenic bHLH transcription factors and dorsal interneuron progenitor markers. Together, these data demonstrate a requirement for Geminin for NT patterning and neuronal differentiation during mammalian neurulation in vivo.


Assuntos
Geminina/genética , Placa Neural/embriologia , Defeitos do Tubo Neural/genética , Tubo Neural/embriologia , Neurogênese/genética , Animais , Apoptose/genética , Proliferação de Células , Cromatina , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Mesoderma/embriologia , Camundongos , Camundongos Knockout , Tubo Neural/anormalidades , Neurulação/genética
5.
Cell Tissue Res ; 359(1): 65-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367430

RESUMO

In the developing mammalian nervous system, common progenitors integrate both cell extrinsic and intrinsic regulatory programs to produce distinct neuronal and glial cell types as development proceeds. This spatiotemporal restriction of neural progenitor differentiation is enforced, in part, by the dynamic reorganization of chromatin into repressive domains by Polycomb repressive complexes, effectively limiting the expression of fate-determining genes. Here, we review the distinct roles that Polycomb repressive complexes play during neurogenesis and gliogenesis, while also highlighting recent work describing the molecular mechanisms that govern their dynamic activity in neural development. Further investigation of the way in which Polycomb complexes are regulated in neural development will enable more precise manipulation of neural progenitor differentiation facilitating the efficient generation of specific neuronal and glial cell types for many biological applications.


Assuntos
Sistema Nervoso/crescimento & desenvolvimento , Neurogênese , Proteínas do Grupo Polycomb/metabolismo , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
6.
Development ; 138(1): 33-44, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21098561

RESUMO

Transient maintenance of a pluripotent embryonic cell population followed by the onset of multi-lineage commitment is a fundamental aspect of development. However, molecular regulation of this transition is not well characterized in vivo. Here, we demonstrate that the nuclear protein Geminin is required to restrain commitment and spatially restrict mesoderm, endoderm and non-neural ectoderm to their proper locations in the Xenopus embryo. We used microarray analyses to demonstrate that Geminin overexpression represses many genes associated with cell commitment and differentiation, while elevating expression levels of genes that maintain pluripotent early and immature neurectodermal cell states. We characterized the relationship of Geminin to cell signaling and found that Geminin broadly represses Activin-, FGF- and BMP-mediated cell commitment. Conversely, Geminin knockdown enhances commitment responses to growth factor signaling and causes ectopic mesodermal, endodermal and epidermal fate commitment in the embryo. We also characterized the functional relationship of Geminin with transcription factors that had similar activities and found that Geminin represses commitment independent of Oct 4 ortholog (Oct25/60) activities, but depends upon intact Polycomb repressor function. Consistent with this, chromatin immunoprecipitation assays directed at mesodermal genes demonstrate that Geminin promotes Polycomb binding and Polycomb-mediated repressive histone modifications, while inhibiting modifications associated with gene activation. This work defines Geminin as an essential regulator of the embryonic transition from pluripotency through early multi-lineage commitment, and demonstrates that functional cooperativity between Geminin and Polycomb contributes to this process.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Embrião não Mamífero/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Imunoprecipitação da Cromatina , Embrião não Mamífero/citologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Endoderma/metabolismo , Gástrula/metabolismo , Hibridização In Situ , Mesoderma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus , Proteínas de Xenopus
7.
Stem Cells ; 31(8): 1477-87, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23630199

RESUMO

Embryonic cells use both growth factor signaling and cell intrinsic transcriptional and epigenetic regulation to acquire early cell fates. Underlying mechanisms that integrate these cues are poorly understood. Here, we investigated the role of Geminin, a nucleoprotein that interacts with both transcription factors and epigenetic regulatory complexes, during fate acquisition of mouse embryonic stem cells. In order to determine Geminin's role in mesendoderm formation, a process which occurs during embryonic gastrulation, we selectively over-expressed or knocked down Geminin in an in vitro model of differentiating mouse embryonic stem cells. We found that Geminin antagonizes mesendodermal fate acquisition, while these cells instead maintain elevated expression of genes associated with pluripotency of embryonic stem cells. During mesendodermal fate acquisition, Geminin knockdown promotes Wnt signaling, while Bmp, Fgf, and Nodal signaling are not affected. Moreover, we showed that Geminin facilitates the repression of mesendodermal genes that are regulated by the Polycomb repressor complex. Geminin directly binds several of these genes, while Geminin knockdown in mesendodermal cells reduces Polycomb repressor complex occupancy at these loci and increases trimethylation of histone H3 lysine 4, which correlates with active gene expression. Together, these results indicate that Geminin is required to restrain mesendodermal fate acquisition of early embryonic cells and that this is associated with both decreased Wnt signaling and enhanced Polycomb repressor complex retention at mesendodermal genes.


Assuntos
Células-Tronco Embrionárias/fisiologia , Geminina/fisiologia , Mesoderma/fisiologia , Proteínas do Grupo Polycomb/fisiologia , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Geminina/genética , Geminina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Análise em Microsséries , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt
8.
Proc Natl Acad Sci U S A ; 108(8): 3294-9, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300881

RESUMO

Formation of the complex vertebrate nervous system begins when pluripotent cells of the early embryo are directed to acquire a neural fate. Although cell intrinsic controls play an important role in this process, the molecular nature of this regulation is not well defined. Here we assessed the role for Geminin, a nuclear protein expressed in embryonic cells, during neural fate acquisition from mouse embryonic stem (ES) cells. Whereas Geminin knockdown does not affect the ability of ES cells to maintain or exit pluripotency, we found that it significantly impairs their ability to acquire a neural fate. Conversely, Geminin overexpression promotes neural gene expression, even in the presence of growth factor signaling that antagonizes neural transcriptional responses. These data demonstrate that Geminin's activity contributes to mammalian neural cell fate acquisition. We investigated the mechanistic basis of this phenomenon and found that Geminin maintains a hyperacetylated and open chromatin conformation at neural genes. Interestingly, recombinant Geminin protein also rapidly alters chromatin acetylation and accessibility even when Geminin is combined with nuclear extract and chromatin in vitro. Together, these data support a role for Geminin as a cell intrinsic regulator of neural fate acquisition that promotes expression of neural genes by regulating chromatin accessibility and histone acetylation.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Células-Tronco Embrionárias/citologia , Sistema Nervoso/crescimento & desenvolvimento , Proteínas Nucleares/fisiologia , Acetilação , Animais , Cromatina/química , Geminina , Histonas/metabolismo , Camundongos , Sistema Nervoso/citologia , Células-Tronco Pluripotentes/citologia
9.
iScience ; 27(6): 109967, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38827400

RESUMO

Although human cortical interneurons (cINs) are a minority population in the cerebral cortex, disruption of interneuron development is a frequent contributor to neurodevelopmental disorders. Here, we utilized a model for deriving cINs from human embryonic stem cells to profile chromatin state changes and generate an atlas of cis-regulatory elements (CREs) controlling human cIN development. We used these data to define candidate transcription factors (TFs) that may bind these CREs to regulate interneuron progenitor specification. Among these were RFX3 and RFX4, risk genes for autism spectrum disorder (ASD) with uncharacterized roles in human neuronal development. Using RFX3 and RFX4 knockdown models, we demonstrated new requirements for both genes in interneuron progenitor specification, with RFX3 deficiency causing precocious neuronal differentiation while RFX4 deficiency instead resulted in cessation of progenitor cell proliferation. Together, this work both defined central features of cis-regulatory control and identified new TF requirements for human interneuron development.

10.
Stem Cell Rev Rep ; 19(3): 639-650, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36370261

RESUMO

Copy number variants (CNVs), involving duplication or deletion of susceptible intervals of the human genome, underlie a range of neurodevelopmental and neuropsychiatric disorders. As accessible in vivo animal models of these disorders often cannot be generated, induced pluripotent stem cell (iPSC) models derived from patients carrying these CNVs can reveal alterations of brain development and neuronal function that contribute to these disorders. CNVs involving deletion versus duplication of a particular genomic interval often result both in distinct clinical phenotypes and in differential phenotypic penetrance. This review initially focuses on CNVs at 15q13.3, which contribute to autism spectrum disorder, attention deficit/hyperactivity disorder, and schizophrenia. Like most CNVs, deletions at 15q13.3 usually cause severe clinical phenotypes, while duplications instead result in highly variable penetrance, with some carriers exhibiting no clinical phenotype. Here, we describe cellular and molecular phenotypes seen in iPSC-derived neuronal models of 15q13.3 duplication and deletion, which may contribute both to the differential clinical consequences and phenotypic penetrance. We then relate this work to many other CNVs involving both duplication and deletion, summarizing findings from iPSC studies and their relationship to clinical phenotype. Together, this work highlights how CNVs involving duplication versus deletion can differentially alter neural development and function to contribute to neuropsychiatric disorders. iPSC-derived neuronal models of these disorders can be used both to understand the underlying neurodevelopmental alterations and to develop pharmacological or molecular approaches for phenotypic rescue that may suggest leads for patient intervention. Top: Deletion versus duplication of the same genomic interval results in different clinical phenotypes and degrees of phenotypic penetrance. Example findings schematized. Bottom: iPSC-derived neurons from individuals with these CNVs involving deletion versus duplication likewise often differential phenotypes (increases or decreases) in the categories shown. Figure created with BioRender.com.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Variações do Número de Cópias de DNA/genética , Transtorno do Espectro Autista/genética , Neurônios , Fenótipo
11.
Neuron ; 110(20): 3243-3262, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35868305

RESUMO

Male sex is a strong risk factor for autism spectrum disorder (ASD). The leading theory for a "female protective effect" (FPE) envisions males and females have "differing thresholds" under a "liability threshold model" (DT-LTM). Specifically, this model posits that females require either a greater number or larger magnitude of risk factors (i.e., greater liability) to manifest ASD, which is supported by the finding that a greater proportion of females with ASD have highly penetrant genetic mutations. Herein, we derive testable hypotheses from the DT-LTM for ASD, investigating heritability, familial recurrence, correlation between ASD penetrance and sex ratio, population traits, clinical features, the stability of the sex ratio across diagnostic changes, and highlight other key prerequisites. Our findings reveal that several key predictions of the DT-LTM are not supported by current data, requiring us to establish a different conceptual framework for evaluating alternate models that explain sex differences in ASD.


Assuntos
Transtorno do Espectro Autista , Feminino , Masculino , Humanos , Transtorno do Espectro Autista/diagnóstico , Caracteres Sexuais , Fenótipo , Penetrância
12.
EMBO J ; 26(24): 5093-108, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18007592

RESUMO

Proneural basic helix-loop-helix proteins are key regulators of neurogenesis but their 'proneural' function is not well understood, partly because primary targets have not been systematically defined. Here, we identified direct transcriptional targets of the bHLH proteins Neurogenin and NeuroD and found that primary roles of these transcription factors are to induce regulators of transcription, signal transduction, and cytoskeletal rearrangement for neuronal differentiation and migration. We determined targets induced in both Xenopus and mouse, which represent evolutionarily conserved core mediators of Neurogenin and NeuroD activities. We defined consensus sequences for Neurogenin and NeuroD binding and identified responsive enhancers in seven shared target genes. These enhancers commonly contained clustered, conserved consensus-binding sites and drove neural-restricted transgene expression in Xenopus embryos. We then used this enhancer signature in a genome-wide computational approach to predict additional Neurogenin/NeuroD target genes involved in neurogenesis. Taken together, these data demonstrate that Neurogenin and NeuroD preferentially recognize neurogenesis-related targets through an enhancer signature of clustered consensus-binding sites and regulate neurogenesis by activating a core set of transcription factors, which build a robust network controlling neurogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Transcrição Gênica , Proteínas de Xenopus/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ectoderma/metabolismo , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Perfilação da Expressão Gênica , Sequências Hélice-Alça-Hélice , Hibridização In Situ , Camundongos , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Capuzes de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
13.
Stem Cell Reports ; 16(6): 1446-1457, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33861989

RESUMO

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and their differentiation into neural lineages is a revolutionary experimental system for studying neurological disorders, including intellectual and developmental disabilities (IDDs). However, issues related to variability and reproducibility have hindered translating preclinical findings into drug discovery. Here, we identify areas for improvement by conducting a comprehensive review of 58 research articles that utilized iPSC-derived neural cells to investigate genetically defined IDDs. Based upon these findings, we propose recommendations for best practices that can be adopted by research scientists as well as journal editors.


Assuntos
Diferenciação Celular , Reprogramação Celular , Variação Genética , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual/etiologia , Humanos , Modelos Biológicos , Neurônios , Reprodutibilidade dos Testes
14.
Neurochem Int ; 147: 105039, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915225

RESUMO

Epigenetic regulation plays an important role in controlling gene expression during complex processes, such as development of the human brain. Mutations in genes encoding chromatin modifying proteins and in the non-protein coding sequences of the genome can potentially alter transcription factor binding or chromatin accessibility. Such mutations can frequently cause neurodevelopmental disorders, therefore understanding how epigenetic regulation shapes brain development is of particular interest. While epigenetic regulation of neural development has been extensively studied in murine models, significant species-specific differences in both the genome sequence and in brain development necessitate human models. However, access to human fetal material is limited and these tissues cannot be grown or experimentally manipulated ex vivo. Therefore, models that recapitulate particular aspects of human fetal brain development, such as the in vitro differentiation of human pluripotent stem cells (hPSCs), are instrumental for studying the epigenetic regulation of human neural development. Here, we examine recent studies that have defined changes in the epigenomic landscape during fetal brain development. We compare these studies with analogous data derived by in vitro differentiation of hPSCs into specific neuronal cell types or as three-dimensional cerebral organoids. Such comparisons can be informative regarding which aspects of fetal brain development are faithfully recapitulated by in vitro differentiation models and provide a foundation for using experimentally tractable in vitro models of human brain development to study neural gene regulation and the basis of its disruption to cause neurodevelopmental disorders.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Transtornos do Neurodesenvolvimento/metabolismo , Organoides/metabolismo , Animais , Humanos , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo
15.
Mol Autism ; 10: 51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31893020

RESUMO

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with pronounced heritability in the general population. This is largely attributable to the effects of polygenic susceptibility, with inherited liability exhibiting distinct sex differences in phenotypic expression. Attempts to model ASD in human cellular systems have principally involved rare de novo mutations associated with ASD phenocopies. However, by definition, these models are not representative of polygenic liability, which accounts for the vast share of population-attributable risk. Methods: Here, we performed what is, to our knowledge, the first attempt to model multiplex autism using patient-derived induced pluripotent stem cells (iPSCs) in a family manifesting incremental degrees of phenotypic expression of inherited liability (absent, intermediate, severe). The family members share an inherited variant of uncertain significance (VUS) in GPD2, a gene that was previously associated with developmental disability but here is insufficient by itself to cause ASD. iPSCs from three first-degree relatives and an unrelated control were differentiated into both cortical excitatory (cExN) and cortical inhibitory (cIN) neurons, and cellular phenotyping and transcriptomic analysis were conducted. Results: cExN neurospheres from the two affected individuals were reduced in size, compared to those derived from unaffected related and unrelated individuals. This reduction was, at least in part, due to increased apoptosis of cells from affected individuals upon initiation of cExN neural induction. Likewise, cIN neural progenitor cells from affected individuals exhibited increased apoptosis, compared to both unaffected individuals. Transcriptomic analysis of both cExN and cIN neural progenitor cells revealed distinct molecular signatures associated with affectation, including the misregulation of suites of genes associated with neural development, neuronal function, and behavior, as well as altered expression of ASD risk-associated genes. Conclusions: We have provided evidence of morphological, physiological, and transcriptomic signatures of polygenic liability to ASD from an analysis of cellular models derived from a multiplex autism family. ASD is commonly inherited on the basis of additive genetic liability. Therefore, identifying convergent cellular and molecular phenotypes resulting from polygenic and monogenic susceptibility may provide a critical bridge for determining which of the disparate effects of rare highly deleterious mutations might also apply to common autistic syndromes.


Assuntos
Transtorno Autístico/patologia , Comunicação Celular , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Adolescente , Transtorno Autístico/genética , Diferenciação Celular/genética , Pré-Escolar , Análise por Conglomerados , Família , Feminino , Regulação da Expressão Gênica , Genótipo , Humanos , Lactente , Recém-Nascido , Interneurônios/patologia , Masculino , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Linhagem , Fenótipo , Gravidez , Reprodutibilidade dos Testes , Transcriptoma/genética
16.
Epigenomics ; 10(2): 219-231, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334242

RESUMO

Human neurodevelopmental disorders (NDDs) involve mutations in hundreds of individual genes, with over-representation in genes encoding proteins that alter chromatin structure to modulate gene expression. Here, we highlight efforts to model these NDDs through in vitro differentiation of patient-specific induced pluripotent stem cells into neurons. We discuss how epigenetic regulation controls normal cortical development, how mutations in several classes of epigenetic regulators contribute to NDDs, and approaches for modeling cortical development and function using both directed differentiation and formation of cerebral organoids. We explore successful applications of these models to study both syndromic and nonsyndromic NDDs and to define convergent mechanisms, addressing both the potential and challenges of using this approach to define cellular and molecular mechanisms that underlie NDDs.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , Epigênese Genética , Código das Histonas , Células-Tronco Pluripotentes Induzidas , Transtornos do Neurodesenvolvimento/genética , Transtorno Autístico/genética , Humanos , Modelos Neurológicos , Modelos Teóricos , Mutação , Telencéfalo
17.
Front Biosci ; 12: 1395-409, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127390

RESUMO

Geminin was initially characterized as a bifunctional protein with roles in regulating the fidelity of DNA replication and in controlling cell fate during embryonic nervous system formation. More recently, Geminin's roles have expanded, encompassing regulation of cell proliferation and differentiation during retinogenesis, control of Hox transcription factor function during vertebrate axial patterning, and regulation of the timing of neuronal differentiation. Geminin interacts with homeodomain-containing transcription factors and with protein complexes that regulate chromatin structure, including Polycomb complexes and the catalytic subunits of the SWI/SNF chromatin remodeling complex, Brg1 and Brahma. Activities for Geminin in coordinating cellular events at the transition from proliferation to differentiation have recently emerged in multiple developmental contexts. This review will summarize Geminin's increasingly diverse roles as a developmental regulatory molecule.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclo Celular , Desenvolvimento Embrionário , Transcrição Gênica , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Embrião não Mamífero/metabolismo , Geminina , Humanos , Invertebrados/embriologia , Dados de Sequência Molecular , Vertebrados/embriologia , Proteínas de Xenopus
18.
Genes Cancer ; 8(9-10): 725-744, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29234490

RESUMO

Medulloblastoma is the most common malignant brain cancer of childhood. Further understanding of tumorigenic mechanisms may define new therapeutic targets. Geminin maintains genome fidelity by controlling re-initiation of DNA replication within a cell cycle. In some contexts, Geminin inhibition induces cancer-selective cell cycle arrest and apoptosis and/or sensitizes cancer cells to Topoisomerase IIα inhibitors such as etoposide, which is used in combination chemotherapies for medulloblastoma. However, Geminin's potential role in medulloblastoma tumorigenesis remained undefined. Here, we found that Geminin is highly expressed in human and mouse medulloblastomas and in murine granule neuron precursor (GNP) cells during cerebellar development. Conditional Geminin loss significantly enhanced survival in the SmoA1 mouse medulloblastoma model. Geminin loss in this model also reduced numbers of preneoplastic GNPs persisting at one postnatal month, while at two postnatal weeks these cells exhibited an elevated DNA damage response and apoptosis. Geminin knockdown likewise impaired human medulloblastoma cell growth, activating G2 checkpoint and DNA damage response pathways, triggering spontaneous apoptosis, and enhancing G2 accumulation of cells in response to etoposide treatment. Together, these data suggest preneoplastic and cancer cell-selective roles for Geminin in medulloblastoma, and suggest that targeting Geminin may impair tumor growth and enhance responsiveness to Topoisomerase IIα-directed chemotherapies.

19.
J Neurodev Disord ; 8: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303449

RESUMO

Induced pluripotent stem cells (iPSCs) allow researchers to make customized patient-derived cell lines by reprogramming noninvasively retrieved somatic cells. These cell lines have the potential to faithfully represent an individual's genetic background; therefore, in the absence of available human brain tissue from a living patient, these models have a significant advantage relative to other models of neurodevelopmental disease. When using human induced pluripotent stem cells (hiPSCs) to model X-linked developmental disorders or inherited conditions that undergo sex-specific modulation of penetrance (e.g., autism spectrum disorders), there are significant complexities in the course and status of X chromosome inactivation (XCI) that are crucial to consider in establishing the validity of cellular models. There are major gaps and inconsistencies in the existing literature regarding XCI status during the derivation and maintenance of hiPSCs and their differentiation into neurons. Here, we briefly describe the importance of the problem, review the findings and inconsistencies of the existing literature, delineate options for specifying XCI status in clonal populations, and develop recommendations for future studies.

20.
Sci Rep ; 6: 37412, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27881878

RESUMO

Neural cell fate acquisition is mediated by transcription factors expressed in nascent neuroectoderm, including Geminin and members of the Zic transcription factor family. However, regulatory networks through which this occurs are not well defined. Here, we identified Geminin-associated chromatin locations in embryonic stem cells and Geminin- and Zic1-associated locations during neural fate acquisition at a genome-wide level. We determined how Geminin deficiency affected histone acetylation at gene promoters during this process. We integrated these data to demonstrate that Geminin associates with and promotes histone acetylation at neurodevelopmental genes, while Geminin and Zic1 bind a shared gene subset. Geminin- and Zic1-associated genes exhibit embryonic nervous system-enriched expression and encode other regulators of neural development. Both Geminin and Zic1-associated peaks are enriched for Zic1 consensus binding motifs, while Zic1-bound peaks are also enriched for Sox3 motifs, suggesting co-regulatory potential. Accordingly, we found that Geminin and Zic1 could cooperatively activate the expression of several shared targets encoding transcription factors that control neurogenesis, neural plate patterning, and neuronal differentiation. We used these data to construct gene regulatory networks underlying neural fate acquisition. Establishment of this molecular program in nascent neuroectoderm directly links early neural cell fate acquisition with regulatory control of later neurodevelopment.


Assuntos
Geminina/genética , Redes Reguladoras de Genes , Genoma , Neurogênese/genética , Neurônios/metabolismo , Fatores de Transcrição/genética , Acetilação , Animais , Sítios de Ligação , Diferenciação Celular , Cromatina/química , Cromatina/metabolismo , Embrião de Mamíferos , Geminina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Histonas/genética , Histonas/metabolismo , Camundongos , Anotação de Sequência Molecular , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Placa Neural/citologia , Placa Neural/crescimento & desenvolvimento , Placa Neural/metabolismo , Neurônios/citologia , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA