Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J AOAC Int ; 100(4): 871-880, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28534467

RESUMO

The botanical origin of seven types of Slovenian honey was investigated by analysis of their elemental content using k0-instrumental neutron activation analysis. A total of 28 representative samples were collected from beekeepers all over Slovenia in 2 consecutive years. Nineteen of the 37 elements measured were present in amounts above their LOD. The present study suggests that the determination of only alkali elements might be sufficient for the classification of Slovenian honeys according to their botanical origin. Linden and multifloral honeys can be differentiated on the basis of Na content. The differentiation of forest, spruce, and fir honeys is possible on the basis of differences in Cs, K, and Rb content. The difference between Na and Rb content can be used as a discriminating tool between light and dark honeys, because light honeys (black locust, linden, and multifloral) contained more Na than Rb, whereas it was the opposite for dark honeys (chestnut, forest, spruce, and fir). Statistically significant correlations were found between K and Rb and between K and Cs content. This study represents a considerable step in filling the knowledge gap concerning both the determination of elements present in low concentrations and the botanical origin of Slovenian honey.


Assuntos
Mel/análise , Análise de Ativação de Nêutrons , Eslovênia
2.
J Agric Food Chem ; 58(24): 12794-803, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21087042

RESUMO

Isotope parameters (δ(13)C(honey), δ(13)C(protein), δ(15)N) were determined for 271 honey samples of 7 types (black locust, multifloral, lime, chestnut, forest, spruce, and fir honeys) from 4 natural geographical regions of Slovenia. Carbon and nitrogen stable isotope ratios were measured to elucidate the applicability of this method in the identification of the botanical and geographical origin of honey and in honey adulteration. Only 2.2% of the samples were adulterated according to the internal standard carbon isotope ratio analysis method. Botanical origin did not have any major influence on the honey isotope profiles; only black locust honey showed higher δ(13)C values. Some differences were seen across different production years, indicating that the influence of season should be further tested. Statistical and multivariate analyses demonstrated differences among honeys of various geographical origins. Those from the Alpine region had low δ(13)C (-26.0‰) and δ(15)N values (1.1‰); those from the Mediterranean region, high δ(13)C (-24.6‰) and medium δ(15)N values (2.2‰); those from the Pannonian region, medium δ(13)C (-25.6‰) and high δ(15)N value (3.0‰); and those from the Dinaric region, medium δ(13)C (-25.7‰) and low δ(15)N values (1.4‰).


Assuntos
Isótopos de Carbono/análise , Contaminação de Alimentos/análise , Mel/análise , Isótopos de Nitrogênio/análise , Mel/normas , Plantas/química , Controle de Qualidade , Eslovênia
3.
J Agric Food Chem ; 57(10): 4409-14, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19364106

RESUMO

This work on the botanical origin of various types of honey produced in Slovenia and based on the mineral content analyses by the total reflection X-ray spectrometry (TXRF) is a continuation of this group's preliminary work (Golob, T.; Dobersek, U.; Kump, P.; Necemer, M. Food Chem. 2005, 91, 593-600), which introduced the analytical methodology and employed only a simple statistical evaluation and which examined the possibility to determine the botanical origin of honey samples via elemental content. A much more comprehensive study on a total of 264 major types of honey samples harvested in 2004, 2005, and 2006 and interpreting the results with up to date chemometric methods was performed in this work. Slovenia is a small country by surface area, but it is pedologically and climatically diverse, therefore offering interesting possibilities for studying the influence of these diversities on the elemental content of natural products. By employing principal component analysis (PCA) and regularized discriminant analysis (RDA) it was established that from all of the measured elements only the four characteristic key elements Cl, K, Mn, and Rb could be used to best discriminate the types of honey. It was established that the employed combination of a simple, fast, and inexpensive multielement TXRF analytical approach and the evaluation of data by chemometric methods has the potential to discriminate the botanical origins of various types of honey.


Assuntos
Mel/análise , Mel/classificação , Espectrometria por Raios X , Cloro/análise , Análise Discriminante , Humanos , Manganês/análise , Plantas/química , Pólen/química , Potássio/análise , Rubídio/análise , Sensação , Eslovênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA