Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Geophys Res Lett ; 44(10): 5104-5112, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29950746

RESUMO

Volcanic eruptions have global climate impacts, but their effect on the hydrologic cycle is poorly understood. We use a modified version of superposed epoch analysis, an eruption year list collated from multiple datasets, and seasonal paleoclimate reconstructions (soil moisture, precipitation, geopotential heights, and temperature) to investigate volcanic forcing of spring and summer hydroclimate over Europe and the Mediterranean over the last millennium. In the western Mediterranean, wet conditions occur in the eruption year and the following 3 years. Conversely, northwestern Europe and the British Isles experience dry conditions in response to volcanic eruptions, with the largest moisture deficits in post-eruption years 2 and 3. The precipitation response occurs primarily in late spring and early summer (April-July), a pattern that strongly resembles the negative phase of the East Atlantic Pattern. Modulated by this mode of climate variability, eruptions force significant, widespread, and heterogeneous hydroclimate responses across Europe and the Mediterranean.

2.
Science ; 254(5035): 1183-5, 1991 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17776407

RESUMO

Photochemically generated benzyl radicals react with C(60) producing radical and nonradical adducts Rn C(60) (R = C(6)H(5)CH(2)) with n = 1 to at least 15. The radical adducts with n = 3 and 5 are stable above 50 degrees C and have been identified by electron spin resonance (ESR) spectroscopy as the allylic R(3)C(60)(.) (3) and cyclopentadienyl R(5)C(60)(.) (5) radicals. The unpaired electrons are highly localized on the C(60) surface. The extraordinary stability of these radicals can be attributed to the steric protection of the surface radical sites by the surrounding benzyl substituents. Photochemically generated methyl radicals also add readily to C(60). Mass spectrometric analyses show the formation of (CH(3))nC(60) with n = 1 to at least 34.

3.
Science ; 262(5132): 404-7, 1993 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17789947

RESUMO

Perfluoroalkylated nanospheres have been prepared by reaction of fullerenes with a variety of fluoroalkyl radicals. The latter are generated by thermal or photochemical decomposition of fluoroalkyl iodides or fluorodiacyl peroxides. Up to 16 radicals add to C(60) to afford easily isolable fluoroalkylated derivatives. The monosubstituted radical adducts were detected by electron spin resonance in the early stages of the fluoroalkylation reactions. These spheroidal molecules are thermally quite stable, soluble in fluoroorganic solvents, chemically resistant to corrosive aqueous solutions, and more volatile than the parent fullerenes. Films of the sublimed material display properties typical for a perfluoroalkylated material.

4.
J Am Chem Soc ; 123(41): 9956-62, 2001 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-11592874

RESUMO

A gas-phase NMR kinetic technique has been used for the first time to obtain accurate measurements of rate constants of some bimolecular, second-order cycloaddition reactions. As a test of the potential use of this technique for the study of second-order reactions, the rate constants and the activation parameters for the cyclodimerization reactions of chlorotrifluoroethylene (CTFE) and tetrafluoroethylene (TFE) were determined in the temperature range 240-340 degrees C, using a commercial high-temperature NMR probe. Obtaining excellent agreement of the results with published data, the technique was then applied to the reaction of 1,1-difluoroallene with 1,3-butadiene, the results of which indicate that the use of gas-phase NMR for reaction kinetics is particularly valuable when a reagent is available only in small amounts and in cases where there are several competing processes occurring simultaneously. The major processes observed in this reaction are regioselective [2+2] and [2+4] cycloadditions, whose rates and activation parameters were determined [k2 = 9.3 x 10(6) exp(-20.1 kcal x mol(-1)/RT) L/mol(-1) x s(-1) and k3 = 1.2 x 10(6) exp(-18.4 kcal x mol(-1)/RT) L/mol(-1) x s(-)(1), respectively] in the temperature range 130-210 degrees C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA