Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur Biophys J ; 49(6): 485-495, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803311

RESUMO

The identification of cancer-related changes in cells and tissues based on the measurements of elastic properties using atomic force microscopy (AFM) seems to be approaching clinical application. Several limiting aspects have already been discussed; however, still, no data have shown how specific AFM probe geometries are related to the biomechanical evaluation of cancer cells. Here, we analyze and compare the nanomechanical results of mechanically homogenous polyacrylamide gels and heterogeneous bladder cancer cells measured using AFM probes of various tip geometry, including symmetric and non-symmetric pyramids and a sphere. Our observations show large modulus variability aligned with both types of AFM probes used and with the internal structure of the cells. Altogether, these results demonstrate that it is possible to differentiate between compliant and rigid samples of kPa elasticity; however, simultaneously, they highlight the strong need for standardized protocols for AFM-based elasticity measurements if applied in clinical practice including the use of a single type of AFM cantilever.


Assuntos
Hidrogéis/química , Microscopia de Força Atômica/métodos , Linhagem Celular , Módulo de Elasticidade , Humanos , Fenômenos Mecânicos
2.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233645

RESUMO

Increasing attention is devoted to the use of nanomechanics as a marker of various pathologies. Atomic force microscopy (AFM) is one of the techniques that could be applied to quantify the nanomechanical properties of living cells with a high spatial resolution. Thus, AFM offers the possibility to trace changes in the reorganization of the cytoskeleton in living cells. Impairments in the structure, organization, and functioning of two main cytoskeletal components, namely, actin filaments and microtubules, cause severe effects, leading to cell death. That is why these cytoskeletal components are targets for antitumor therapy. This review intends to describe the gathered knowledge on the capability of AFM to trace the alterations in the nanomechanical properties of living cells induced by the action of antitumor drugs that could translate into their effectiveness.


Assuntos
Antineoplásicos/farmacologia , Citoesqueleto/efeitos dos fármacos , Microscopia de Força Atômica/métodos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Citoesqueleto/patologia , Humanos , Neoplasias/tratamento farmacológico
3.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859105

RESUMO

Human dental pulp harbours unique stem cell population exhibiting mesenchymal stem/stromal cell (MSC) characteristics. This study aimed to analyse the differentiation potential and other essential functional and morphological features of dental pulp stem cells (DPSCs) in comparison with Wharton's jelly-derived MSCs from the umbilical cord (UC-MSCs), and to evaluate the osteogenic differentiation of DPSCs in 3D culture with a hypoxic microenvironment resembling the stem cell niche. Human DPSCs as well as UC-MSCs were isolated from primary human tissues and were subjected to a series of experiments. We established a multiantigenic profile of DPSCs with CD45-/CD14-/CD34-/CD29+/CD44+/CD73+/CD90+/CD105+/Stro-1+/HLA-DR- (using flow cytometry) and confirmed their tri-lineage osteogenic, chondrogenic, and adipogenic differentiation potential (using qRT-PCR and histochemical staining) in comparison with the UC-MSCs. The results also demonstrated the potency of DPSCs to differentiate into osteoblasts in vitro. Moreover, we showed that the DPSCs exhibit limited cardiomyogenic and endothelial differentiation potential. Decreased proliferation and metabolic activity as well as increased osteogenic differentiation of DPSCs in vitro, attributed to 3D cell encapsulation and low oxygen concentration, were also observed. DPSCs exhibiting elevated osteogenic potential may serve as potential candidates for a cell-based product for advanced therapy, particularly for bone repair. Novel tissue engineering approaches combining DPSCs, 3D biomaterial scaffolds, and other stimulating chemical factors may represent innovative strategies for pro-regenerative therapies.


Assuntos
Adipogenia , Técnicas de Cultura de Células/métodos , Condrogênese , Polpa Dentária/citologia , Osteogênese , Diferenciação Celular , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco , Engenharia Tecidual , Geleia de Wharton/citologia
4.
Molecules ; 22(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165394

RESUMO

This study investigates the effects of the addition of tungsten on the structure, phase composition, textural properties and activities of ß-SiC-based catalysts in the aqueous phase hydrogenation of furfural. Carbothermal reduction of SiO2 in the presence of WO3 at 1550 °C in argon resulted in the formation of WxC-ß-SiC nanocomposite powders with significant variations in particle morphology and content of WxC-tipped ß-SiC nano-whiskers, as revealed by TEM and SEM-EDS. The specific surface area (SSA) of the nanocomposite strongly depended on the amount of tungsten and had a notable impact on its catalytic properties for the production of furfuryl alcohol (FA) and tetrahydrofurfuryl alcohol (THFA). Nanocomposite WxC-ß-SiC catalysts with 10 wt % W in the starting mixture had the highest SSA and the smallest WxC crystallites. Some 10 wt % W nanocomposite catalysts demonstrated up to 90% yield of THFA, in particular in the reduction of furfural derived from biomass, although the reproducible performance of such catalysts has yet to be achieved.


Assuntos
Furanos/química , Nanocompostos/química , Carbono , Catálise , Hidrogenação , Nanocompostos/ultraestrutura , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X
5.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474339

RESUMO

The dental pulp is the inner part of the tooth responsible for properly functioning during its lifespan. Apart from the very big biological heterogeneity of dental cells, tooth microenvironments differ a lot in the context of mechanical properties-ranging from 5.5 kPa for dental pulp to around 100 GPa for dentin and enamel. This physical heterogeneity and complexity plays a key role in tooth physiology and in turn, is a great target for a variety of therapeutic approaches. First of all, physical mechanisms are crucial for the pain propagation process from the tooth surface to the nerves inside the dental pulp. On the other hand, the modulation of the physical environment affects the functioning of dental pulp cells and thus is important for regenerative medicine. In the present review, we describe the physiological significance of biomechanical processes in the physiology and pathology of dental pulp. Moreover, we couple those phenomena with recent advances in the fields of bioengineering and pharmacology aiming to control the functioning of dental pulp cells, reduce pain, and enhance the differentiation of dental cells into desired lineages. The reviewed literature shows great progress in the topic of bioengineering of dental pulp-although mainly in vitro. Apart from a few positions, it leaves a gap for necessary filling with studies providing the mechanisms of the mechanical control of dental pulp functioning in vivo.


Assuntos
Polpa Dentária , Dente , Medicina Regenerativa , Diferenciação Celular/fisiologia , Biofísica
6.
Curr Neuropharmacol ; 21(10): 2030-2035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36173070

RESUMO

In recent years, increasing attention has been paid to the role of physical factors in biological processes. This direction was ultimately confirmed by the recent 2021 Nobel Prize in medicine and physiology awarded in ½ to Ardem Patapoutian for his discovery of Piezo1 and Piezo2 mechanosensitive receptors. Among them, Piezo2 is responsible for sensing touch, while Piezo1 is engaged in a variety of mechanotransduction events. Piezo1 is expressed in various central nervous system cells, while its expression may be affected in the course of various pathological conditions. Recently, thanks to the development of Piezo1 modulators (i.e. Yoda1, Jedi1/2 and Dooku2), it is possible to study the role of Piezo1 in the pathogenesis of various neurological diseases including ischemia, glioma, and age-related dementias. The results obtained in this field suggest that proper modulation of Piezo1 receptor might be beneficial in the course of various neurological diseases.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Doenças do Sistema Nervoso , Humanos , Canais Iônicos/metabolismo , Doenças do Sistema Nervoso/terapia
7.
Cells ; 12(11)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37296586

RESUMO

Ischaemic stroke is characterized by a sudden loss of blood circulation to an area of the brain, resulting in a corresponding loss of neurologic function. As a result of this process, neurons in the ischaemic core are deprived of oxygen and trophic substances and are consequently destroyed. Tissue damage in brain ischaemia results from a complex pathophysiological cascade comprising various distinct pathological events. Ischaemia leads to brain damage by stimulating many processes, such as excitotoxicity, oxidative stress, inflammation, acidotoxicity, and apoptosis. Nevertheless, less attention has been given to biophysical factors, including the organization of the cytoskeleton and the mechanical properties of cells. Therefore, in the present study, we sought to evaluate whether the oxygen-glucose deprivation (OGD) procedure, which is a commonly accepted experimental model of ischaemia, could affect cytoskeleton organization and the paracrine immune response. The abovementioned aspects were examined ex vivo in organotypic hippocampal cultures (OHCs) subjected to the OGD procedure. We measured cell death/viability, nitric oxide (NO) release, and hypoxia-inducible factor 1α (HIF-1α) levels. Next, the impact of the OGD procedure on cytoskeletal organization was evaluated using combined confocal fluorescence microscopy (CFM) and atomic force microscopy (AFM). Concurrently, to find whether there is a correlation between biophysical properties and the immune response, we examined the impact of OGD on the levels of crucial ischaemia cytokines (IL-1ß, IL-6, IL-18, TNF-α, IL-10, IL-4) and chemokines (CCL3, CCL5, CXCL10) in OHCs and calculated Pearsons' and Spearman's rank correlation coefficients. The results of the current study demonstrated that the OGD procedure intensified cell death and nitric oxide release and led to the potentiation of HIF-1α release in OHCs. Moreover, we presented significant disturbances in the organization of the cytoskeleton (actin fibers, microtubular network) and cytoskeleton-associated protein 2 (MAP-2), which is a neuronal marker. Simultaneously, our study provided new evidence that the OGD procedure leads to the stiffening of OHCs and a malfunction in immune homeostasis. A negative linear correlation between tissue stiffness and branched IBA1 positive cells after the OGD procedure suggests the pro-inflammatory polarization of microglia. Moreover, the negative correlation of pro- and positive anti-inflammatory factors with actin fibers density indicates an opposing effect of the immune mediators on the rearrangement of cytoskeleton induced by OGD procedure in OHCs. Our study constitutes a basis for further research and provides a rationale for integrating biomechanical and biochemical methods in studying the pathomechanism of stroke-related brain damage. Furthermore, presented data pointed out the interesting direction of proof-of-concept studies, in which follow-up may establish new targets for brain ischemia therapy.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Oxigênio/metabolismo , Glucose/metabolismo , Isquemia Encefálica/metabolismo , Actinas/metabolismo , Óxido Nítrico/metabolismo , Acidente Vascular Cerebral/metabolismo , Hipocampo/metabolismo , AVC Isquêmico/metabolismo , Citoesqueleto/metabolismo
8.
Micron ; 150: 103138, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34416532

RESUMO

Cells generate mechanical forces (traction forces, TFs) while interacting with the extracellular matrix or neighbouring cells. Forces are generated by both cells and extracellular matrix (ECM) and transmitted within the cell-ECM or cell-cell contacts involving focal adhesions or adherens junctions. Within more than two decades, substantial progress has been achieved in techniques that measure TFs. One of the techniques is traction force microscopy (TFM). This review discusses the TFM and its advances in measuring TFs exerted by cells (single cells and multicellular systems) at cell-ECM and cell-cell junctional intracellular interfaces. The answers to how cells sense, adapt and respond to mechanical forces unravel their role in controlling and regulating cell behaviour in normal and pathological conditions.


Assuntos
Matriz Extracelular , Tração , Junções Intercelulares , Fenômenos Mecânicos , Microscopia de Força Atômica
9.
Pharmacol Rep ; 73(6): 1626-1641, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34390472

RESUMO

Nervous system diseases are the subject of intensive research due to their association with high mortality rates and their potential to cause irreversible disability. Most studies focus on targeting the biological factors related to disease pathogenesis, e.g. use of recombinant activator of plasminogen in the treatment of stroke. Nevertheless, multiple diseases such as Parkinson's disease and Alzheimer's disease still lack successful treatment. Recently, evidence has indicated that physical factors such as the mechanical properties of cells and tissue and topography play a crucial role in homeostasis as well as disease progression. This review aims to depict these factors' roles in the progression of nervous system diseases and consequently discusses the possibility of new therapeutic approaches. The literature is reviewed to provide a deeper understanding of the roles played by physical factors in nervous system disease development to aid in the design of promising new treatment approaches.


Assuntos
Desenho de Fármacos , Doenças do Sistema Nervoso/fisiopatologia , Animais , Progressão da Doença , Desenvolvimento de Medicamentos , Homeostase/fisiologia , Humanos , Doenças do Sistema Nervoso/terapia
10.
Nanoscale ; 13(12): 6212-6226, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33885607

RESUMO

The crucial role of microtubules in the mitotic-related segregation of chromosomes makes them an excellent target for anticancer microtubule targeting drugs (MTDs) such as vinflunine (VFL), colchicine (COL), and docetaxel (DTX). MTDs affect mitosis by directly perturbing the structural organisation of microtubules. By a direct assessment of the biomechanical properties of prostate cancer DU145 cells exposed to different MTDs using atomic force microscopy, we show that cell stiffening is a response to the application of all the studied MTDs (VFL, COL, DTX). Changes in cellular rigidity are typically attributed to remodelling of the actin filaments in the cytoskeleton. Here, we demonstrate that cell stiffening can be driven by crosstalk between actin filaments and microtubules in MTD-treated cells. Our findings improve the interpretation of biomechanical data obtained for living cells in studies of various physiological and pathological processes.


Assuntos
Preparações Farmacêuticas , Neoplasias da Próstata , Citoesqueleto de Actina , Actinas , Citoesqueleto , Humanos , Masculino , Microtúbulos , Neoplasias da Próstata/tratamento farmacológico
11.
Materials (Basel) ; 13(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050502

RESUMO

The presented research aims to verify whether physicochemical properties of lung fibroblasts, modified by substrate stiffness, can be used to discriminate between normal and fibrotic cells from idiopathic pulmonary fibrosis (IPF). The impact of polydimethylsiloxane (PDMS) substrate stiffness on the physicochemical properties of normal (LL24) and IPF-derived lung fibroblasts (LL97A) was examined in detail. The growth and elasticity of cells were assessed using fluorescence microscopy and atomic force microscopy working in force spectroscopy mode, respectively. The number of fibroblasts, as well as their shape and the arrangement, strongly depends on the mechanical properties of the substrate. Moreover, normal fibroblasts remain more rigid as compared to their fibrotic counterparts, which may indicate the impairments of IPF-derived fibroblasts induced by the fibrosis process. The chemical properties of normal and IPF-derived lung fibroblasts inspected using time-of-flight secondary ion mass spectrometry, and analyzed complexly with principal component analysis (PCA), show a significant difference in the distribution of cholesterol and phospholipids. Based on the observed distinctions between healthy and fibrotic cells, the mechanical properties of cells may serve as prospective diagnostic biomarkers enabling fast and reliable identification of idiopathic pulmonary fibrosis (IPF).

12.
Acta Biochim Pol ; 66(4): 491-498, 2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31883439

RESUMO

Mesenchymal Stem/Stromal Cells (MSCs) have been widely considered as a promising source of cells for tissue regeneration. Among other stem cells, they are characterized by a high osteogenic potential. Intensive studies in this field had shown that even if basic osteogenic differentiation is relatively simple, its clinical application requires more sophisticated approaches to prepare effective and safe cell therapy products. The aim of this review is to underline biological, physical and chemical factors which play a crucial role in osteogenic differentiation of MSCs. Existence of two distinct mechanisms of ossification (intramembranous and endochondral) indicate that choosing a proper source of MSCs may be critical for successful regeneration of a particular bone type. In this context, Dental Pulp Stem Cells representing a group of MSCs and originating from neural crest ( a structure responsible for development of cranial bones) are considered as the most promising for skull bone defect repair. Factors which facilitate osteogenic differentiation of MSCs include changes in forces exerted on cells during development. Thus, culturing of cells in hydrogels or on biocompatible three-dimensional scaffolds improves osteogenic differentiation of MSCs by both, the mechanotransductive and chemical impact on cells. Moreover, atmospheric oxygen concentration routinely used for cell cultures in vitro does not correspond to lower oxygen concentration present in stem cell niches. A decrease in oxygen concentration allows to create more physiological cell culture conditions, mimicking the ones in stem cell niches, which promote the MSCs stemness. Altogether, factors discussed in this review provide exciting opportunities to boost MSCs propagation and osteogenic differentiation which is crucial for successful clinical applications.


Assuntos
Regeneração Óssea/genética , Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Osteogênese/genética , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Diferenciação Celular/genética , Humanos , Hidrogéis/farmacologia , Mecanotransdução Celular/genética , Oxigênio/metabolismo , Nicho de Células-Tronco/genética , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA