Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(3): 1305-1314, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30608655

RESUMO

Nonextractable residues (NER) are pollutants incorporated into the matrix of natural solid matter via different binding mechanisms. They can become bioavailable or remobilize during physical-chemical changes of the surrounding conditions and should thus not be neglected in environmental risk assessment. Sediments, soils, and groundwater sludge contaminated with DDXs (DDT, dichlorodiphenyltrichloroethane; and its metabolites) were treated with solvent extraction, sequential chemical degradation, and thermochemolysis to study the fate of NER-DDX along different environmental aquatic-terrestrial pathways. The results showed that DDT and its first degradation products, DDD (dichlorodiphenyldichloroethane) and DDE (dichlorodiphenyldichloroethylene), were dominant in the free extractable fraction, whereas DDM (dichlorodiphenylmethane), DBP (dichlorobenzophenone), and DDA (dichlorodiphenylacetic acid) were observed primarily after chemical degradation. The detection of DDA, DDMUBr (bis( p-chlorophenyl)-bromoethylene), DDPU (bis( p-chlorophenyl)-propene) and DDPS (bis( p-chlorophenyl)-propane) after chemical treatments evidenced the covalent bindings between these DDXs and the organic matrix. The identified NER-DDXs were categorized into three groups according to the three-step degradation process of DDT. Their distribution along the different pathways demonstrated significant specificity. Based on the obtained results, a conceptual model of the fate of NER-DDXs on their different environmental aquatic-terrestrial pathways is proposed. This model provides basic knowledge for risk assessment and remediation of both extractable and nonextractable DDT-related contaminations.


Assuntos
DDT , Sedimentos Geológicos , Diclorodifenil Dicloroetileno , Diclorodifenildicloroetano , Monitoramento Ambiental
2.
J Hazard Mater ; 353: 360-371, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29684888

RESUMO

The pesticide DDT (1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene) and its degradates are among the most persistent and abundant organochlorine contaminates in the environment, and DDT is still being produced in several Asian countries. In this study, we report for the first time on the detection of DDT-related compounds with one additional or missing chlorine atom at the phenyl group (DDX±Cl) in sediment and soil samples taken in the vicinity of former and current DDT production sites. These congeneric compounds most likely originate from production residues disposed of into the environment. In order to ensure an adequate identification and quantification of this novel organic pollutant group, individual DDX±Cl were synthesized as reference compounds by simulating an impure production of DDT in the laboratory. In contrast to DDX±Cl with (chloro)alkyl moieties, DDX±Cl with (chloro)alkenyl moieties cannot be unambiguous assigned by gas-chromatographic/mass spectrometric (GC/MS) fragmentation and elution orders. The occurrence of DDX±Cl in environmental samples allows to draw conclusions about the purity of the production process in the associated production sites. Moreover, they potentially can serve as molecular indicators to differentiate between industrial DDT emissions and insecticidal applications of DDT. This hypothesis has yet to be confirmed by further research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA