Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Prostate ; 83(9): 840-849, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36988342

RESUMO

BACKGROUND: Evading immune surveillance is a hallmark for the development of multiple cancer types. Whether immune evasion contributes to the pathogenesis of high-grade prostate cancer (HGPCa) remains an area of active inquiry. METHODS: Through single-cell RNA sequencing and multicolor flow cytometry of freshly isolated prostatectomy specimens and matched peripheral blood, we aimed to characterize the tumor immune microenvironment (TME) of localized prostate cancer (PCa), including HGPCa and low-grade prostate cancer (LGPCa). RESULTS: HGPCa are highly infiltrated by exhausted CD8+ T cells, myeloid cells, and regulatory T cells (TRegs). These HGPCa-infiltrating CD8+ T cells expressed high levels of exhaustion markers including TIM3, TOX, TCF7, PD-1, CTLA4, TIGIT, and CXCL13. By contrast, a high ratio of activated CD8+  effector T cells relative to TRegs and myeloid cells infiltrate the TME of LGPCa. HGPCa CD8+  tumor-infiltrating lymphocytes (TILs) expressed more androgen receptor and prostate-specific membran antigen yet less prostate-specific antigen than the LGPCa CD8+  TILs. The PCa TME was infiltrated by macrophages but these did not clearly cluster by M1 and M2 markers. CONCLUSIONS: Our study reveals a suppressive TME with high levels of CD8+ T cell exhaustion in localized PCa, a finding enriched in HGPCa relative to LGPCa. These studies suggest a possible link between the clinical-pathologic risk of PCa and the associated TME. Our results have implications for our understanding of the immunologic mechanisms of PCa pathogenesis and the implementation of immunotherapy for localized PCa.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias da Próstata , Masculino , Humanos , Gradação de Tumores , Linfócitos T CD8-Positivos/patologia , Neoplasias da Próstata/patologia , Próstata/patologia , Antígeno Prostático Específico , Linfócitos do Interstício Tumoral , Imunossupressores , Análise de Célula Única , Microambiente Tumoral
2.
Cancer Immunol Immunother ; 72(2): 301-313, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35834008

RESUMO

BACKGROUND: Pancreatic cancer is a highly lethal malignancy often presenting with advanced disease and characterized by resistance to standard chemotherapy. Immune-based therapies such checkpoint inhibition have been largely ineffective such that pancreatic cancer is categorized as an immunologically "cold tumor". In the present study, we examine the therapeutic efficacy of a personalized cancer vaccine in which tumor cells are fused with dendritic cells (DC) resulting in the broad induction of antitumor immunity. RESULTS: In the KPC spontaneous pancreatic cancer murine model, we demonstrated that vaccination with DC/KPC fusions led to expansion of pancreatic cancer specific lymphocytes with an activated phenotype. Remarkably, vaccination led to a reduction in tumor bulk and near doubling of median survival in this highly aggressive model. In a second murine pancreatic model (Panc02), vaccination with DC/tumor fusions similarly led to expansion of tumor antigen specific lymphocytes and their infiltration to the tumor site. Having shown efficacy in immunocompetent murine models, we subsequently demonstrated that DC/tumor fusions generated from primary human pancreatic cancer and autologous DCs potently stimulate tumor specific cytotoxic lymphocyte responses. CONCLUSIONS: DC/tumor fusions induce the activation and expansion of tumor reactive lymphocytes with the capacity to infiltrate into the pancreatic cancer tumor bed.


Assuntos
Vacinas Anticâncer , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Ativação Linfocitária , Células Dendríticas , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835130

RESUMO

Castration resistant prostate cancer (CRPC) is responsive to androgen receptor (AR) axis targeted agents; however, patients invariably relapse with resistant disease that often progresses to neuroendocrine prostate cancer (NEPC). Treatment-related NEPC (t-NEPC) is highly aggressive with limited therapeutic options and poor survival outcomes. The molecular basis for NEPC progression remains incompletely understood. The MUC1 gene evolved in mammals to protect barrier tissues from loss of homeostasis. MUC1 encodes the transmembrane MUC1-C subunit, which is activated by inflammation and contributes to wound repair. However, chronic activation of MUC1-C contributes to lineage plasticity and carcinogenesis. Studies in human NEPC cell models have demonstrated that MUC1-C suppresses the AR axis and induces the Yamanaka OSKM pluripotency factors. MUC1-C interacts directly with MYC and activates the expression of the BRN2 neural transcription factor (TF) and other effectors, such as ASCL1, of the NE phenotype. MUC1-C also induces the NOTCH1 stemness TF in promoting the NEPC cancer stem cell (CSC) state. These MUC1-C-driven pathways are coupled with activation of the SWI/SNF embryonic stem BAF (esBAF) and polybromo-BAF (PBAF) chromatin remodeling complexes and global changes in chromatin architecture. The effects of MUC1-C on chromatin accessibility integrate the CSC state with the control of redox balance and induction of self-renewal capacity. Importantly, targeting MUC1-C inhibits NEPC self-renewal, tumorigenicity and therapeutic resistance. This dependence on MUC1-C extends to other NE carcinomas, such as SCLC and MCC, and identify MUC1-C as a target for the treatment of these aggressive malignancies with the anti-MUC1 agents now under clinical and preclinical development.


Assuntos
Carcinoma Neuroendócrino , Mucina-1 , Neoplasias da Próstata , Humanos , Masculino , Carcinogênese/genética , Carcinoma Neuroendócrino/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Mamíferos/metabolismo , Mucina-1/genética , Mucina-1/metabolismo , Recidiva Local de Neoplasia/genética , Próstata/patologia , Neoplasias da Próstata/metabolismo
4.
Carcinogenesis ; 43(1): 67-76, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34657147

RESUMO

Pancreatic ductal adenocarcinomas (PDAC) and poorly differentiated pancreatic neuroendocrine (NE) carcinomas are KRAS mutant malignancies with a potential common cell of origin. PDAC ductal, but not NE, lineage traits have been associated with cell-intrinsic activation of interferon (IFN) pathways. The present studies demonstrate that the MUC1 C-terminal subunit (MUC1-C), which evolved to protect mammalian epithelia from loss of homeostasis, is aberrantly overexpressed in KRAS mutant PDAC tumors and cell lines. We show that MUC1-C is necessary for activation of the type I and II IFN pathways and for expression of the Yamanaka OCT4, SOX2, KLF4 and MYC (OSKM) pluripotency factors. Our results demonstrate that MUC1-C integrates IFN signaling and pluripotency with NE dedifferentiation by forming a complex with MYC and driving the (i) achaete-scute homolog 1 and BRN2/POU3F2 neural, and (ii) NOTCH1/2 stemness transcription factors. Of translational relevance, targeting MUC1-C genetically and pharmacologically in PDAC cells (i) suppresses OSKM, NE dedifferentiation and NOTCH1/2, and (ii) inhibits self-renewal capacity and tumorigenicity. In PDAC tumors, we show that MUC1 significantly associates with activation of IFN signaling, MYC and NOTCH, and that upregulation of the MUC1-C → MYC pathway confers a poor prognosis. These findings indicate that MUC1-C dictates PDAC NE lineage specification and is a potential target for the treatment of recalcitrant pancreatic carcinomas with NE dedifferentiation.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Mucina-1/genética , Células Neuroendócrinas/patologia , Neoplasias Pancreáticas/genética , Adenocarcinoma/patologia , Animais , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genética , Neoplasias Pancreáticas
5.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897789

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.


Assuntos
Neoplasias de Mama Triplo Negativas , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/patologia , Mucina-1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
6.
Haematologica ; 106(5): 1330-1342, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538148

RESUMO

We have developed a personalized vaccine whereby patient derived leukemia cells are fused to autologous dendritic cells, evoking a polyclonal T cell response against shared and neo-antigens. We postulated that the dendritic cell (DC)/AML fusion vaccine would demonstrate synergy with checkpoint blockade by expanding tumor antigen specific lymphocytes that would provide a critical substrate for checkpoint blockade mediated activation. Using an immunocompetent murine leukemia model, we examined the immunologic response and therapeutic efficacy of vaccination in conjunction with checkpoint blockade with respect to leukemia engraftment, disease burden, survival and the induction of tumor specific immunity. Mice treated with checkpoint blockade alone had rapid leukemia progression and demonstrated only a modest extension of survival. Vaccination with DC/AML fusions resulted in the expansion of tumor specific lymphocytes and disease eradication in a subset of animals, while the combination of vaccination and checkpoint blockade induced a fully protective tumor specific immune response in all treated animals. Vaccination followed by checkpoint blockade resulted in upregulation of genes regulating activation and proliferation in memory and effector T cells. Long term survivors exhibited increased T cell clonal diversity and were resistant to subsequent tumor challenge. The combined DC/AML fusion vaccine and checkpoint blockade treatment offers unique synergy inducing the durable activation of leukemia specific immunity, protection from lethal tumor challenge and the selective expansion of tumor reactive clones.


Assuntos
Vacinas Anticâncer , Leucemia Mieloide Aguda , Animais , Antígenos de Neoplasias , Células Dendríticas , Humanos , Leucemia Mieloide Aguda/terapia , Camundongos , Linfócitos T , Vacinação
7.
Carcinogenesis ; 41(9): 1173-1183, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32710608

RESUMO

Chronic inflammation is a highly prevalent consequence of changes in environmental and lifestyle factors that contribute to the development of cancer. The basis for this critical association has largely remained unclear. The MUC1 gene evolved in mammals to protect epithelia from the external environment. The MUC1-C subunit promotes responses found in wound healing and cancer. MUC1-C induces EMT, epigenetic reprogramming, dedifferentiation and pluripotency factor expression, which when prolonged in chronic inflammation promote cancer progression. As discussed in this review, MUC1-C also drives drug resistance and immune evasion, and is an important target for cancer therapeutics now under development.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Mucina-1/metabolismo , Neoplasias/tratamento farmacológico , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mucina-1/genética , Neoplasias/metabolismo , Neoplasias/patologia
8.
Cancer Sci ; 111(10): 3639-3652, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32677159

RESUMO

Mucin 1 C-terminal subunit (MUC1-C) has been introduced as a key regulator for acquiring drug resistance in various cancers, but the functional role of MUC1-C in urothelial carcinoma (UC) cells remains unknown. We aimed to elucidate the molecular mechanisms underlying the acquisition of cisplatin (CDDP) resistance through MUC1-C oncoprotein in UC cells. MUC1-C expression was examined immunohistochemically in tumor specimens of 159 UC patients who received CDDP-based perioperative chemotherapy. As a result, moderate to high MUC1-C expression was independently associated with poor survival in UC patients. Using human bladder cancer cell lines and CDDP-resistant (CR) cell lines, we compared the expression levels of MUC1-C, multiple drug resistance 1 (MDR1), the PI3K-AKT-mTOR pathway, and x-cystine/glutamate transporter (xCT) to elucidate the biological mechanisms contributing to the acquisition of chemoresistance. MUC1-C was strongly expressed in CR cell lines, followed with MDR1 expression via activation of the PI3K-AKT-mTOR pathway. MUC1-C also stabilized the expression of xCT, which enhanced antioxidant defenses by increasing intracellular glutathione (GSH) levels. MUC1 down-regulation showed MDR1 inhibition along with PI3K-AKT-mTOR pathway suppression. Moreover, it inhibited xCT stabilization and resulted in significant decreases in intracellular GSH levels and increased reactive oxygen species (ROS) generation. The MUC1-C inhibitor restored sensitivity to CDDP in CR cells and UC murine xenograft models. In conclusion, we found that MUC1-C plays a pivotal role in the acquisition of CDDP resistance in UC cells, and therefore the combined treatment of CDDP with a MUC1-C inhibitor may become a novel therapeutic option in CR UC patients.


Assuntos
Carcinoma/tratamento farmacológico , Carcinoma/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Mucina-1/genética , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/genética , Animais , Carcinoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/metabolismo
9.
Biochim Biophys Acta Rev Cancer ; 1868(1): 117-122, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28302417

RESUMO

The MUC1 gene evolved in mammalian species to provide protection of epithelia. The transmembrane MUC1 C-terminal subunit (MUC1-C) signals stress to the interior of the epithelial cell and, when overexpressed as in most carcinomas, functions as an oncoprotein. MUC1-C induces the epithelial-mesenchymal transition (EMT) by activating the inflammatory NF-κB p65 pathway and, in turn, the EMT-transcriptional repressor ZEB1. Emerging evidence has indicated that MUC1-C drives a program integrating the induction of EMT with activation of stem cell traits, epigenetic reprogramming and immune evasion. This mini-review focuses on the potential importance of this MUC1-C program in cancer progression.


Assuntos
Carcinoma/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal/genética , Evasão da Resposta Imune/genética , Mucina-1/genética , Proteínas Oncogênicas/genética , Animais , Humanos
10.
Br J Haematol ; 185(4): 679-690, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30828801

RESUMO

Acute myeloid leukaemia (AML) is a lethal haematological malignancy characterized by an immunosuppressive milieu in the tumour microenvironment (TME) that fosters disease growth and therapeutic resistance. Hypomethylating agents (HMAs) demonstrate clinical efficacy in AML patients and exert immunomodulatory activities. In the present study, we show that guadecitabine augments both antigen processing and presentation, resulting in increased AML susceptibility to T cell-mediated killing. Exposure to HMA results in the activation of the endogenous retroviral pathway with concomitant downstream amplification of critical mediators of inflammation. In an immunocompetent murine leukaemia model, guadecitabine negatively regulates inhibitory accessory cells in the TME by decreasing PD-1 (also termed PDCD1) expressing T cells and reducing AML-mediated expansion of myeloid-derived suppressor cells. Therapy with guadecitabine results in enhanced leukaemia-specific immunity, as manifested by increased CD4 and CD8 cells targeting syngeneic leukaemia cells. We have previously reported that vaccination with AML/dendritic cell fusions elicits the expansion of leukaemia-specific T cells and protects against disease relapse. In the present study, we demonstrate that vaccination in conjunction with HMA therapy results in enhanced anti-leukaemia immunity and survival. The combination of a novel personalized dendritic cell/AML fusion vaccine and an HMA has therapeutic potential, and a clinical trial investigating this combination is planned.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Azacitidina/análogos & derivados , Vacinas Anticâncer/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Microambiente Tumoral/imunologia , Animais , Antineoplásicos Imunológicos/imunologia , Azacitidina/imunologia , Azacitidina/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Leucemia Mieloide Aguda/imunologia , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Receptor de Morte Celular Programada 1/metabolismo , Retroviridae/imunologia , Ativação Viral/imunologia
11.
Blood ; 129(13): 1791-1801, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28126925

RESUMO

Myeloid-derived suppressor cells (MDSCs) play a critical role in promoting immune tolerance and disease growth. The mechanism by which tumor cells evoke the expansion of MDSCs in acute myeloid leukemia (AML) has not been well described. We have demonstrated that patients with AML exhibit increased presence of MDSCs in their peripheral blood, in comparison with normal controls. Cytogenetic studies demonstrated that MDSCs in patients with AML may be derived from leukemic or apparently normal progenitors. Engraftment of C57BL/6 mice with TIB-49 AML led to an expansion of CD11b+ Gr1+ MDSCs in bone marrow and spleen. Coculture of the AML cell lines MOLM-4, THP-1 or primary AML cells with donor peripheral blood mononuclear cells elicited a cell contact-dependent expansion of MDSCs. MDSCs were suppressive of autologous T-cell responses as evidenced by reduced T-cell proliferation and a switch from a Th1 to a Th2 phenotype. We hypothesized that the expansion of MDSCs in AML is accomplished by tumor-derived extracellular vesicles (EVs). Using tracking studies, we demonstrated that AML EVs are taken-up myeloid progenitor cells, resulting in the selective proliferation of MDSCs in comparison with functionally competent antigen-presenting cells. The MUC1 oncoprotein was subsequently identified as the critical driver of EV-mediated MDSC expansion. MUC1 induces increased expression of c-myc in EVs that induces proliferation in the target MDSC population via downstream effects on cell cycle proteins. Moreover, we demonstrate that the microRNA miR34a acts as the regulatory mechanism by which MUC1 drives c-myc expression in AML cells and EVs.


Assuntos
Proliferação de Células , Leucemia Mieloide Aguda/patologia , Mucina-1/fisiologia , Células Supressoras Mieloides/patologia , Animais , Comunicação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Vesículas Extracelulares/patologia , Xenoenxertos , Humanos , Leucócitos Mononucleares , Camundongos , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-myc/biossíntese
12.
J Cell Mol Med ; 22(8): 3887-3898, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29761849

RESUMO

Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with an unmet need for improved therapies. Responses to standard cytotoxic therapy in AML are often transient because of the emergence of chemotherapy-resistant disease. The MUC1-C oncoprotein governs critical pathways of tumorigenesis, including self-renewal and survival, and is aberrantly expressed in AML blasts and leukaemia stem cells (LSCs). However, a role for MUC1-C in linking leukaemogenesis and resistance to treatment has not been described. In this study, we demonstrate that MUC1-C overexpression is associated with increased leukaemia initiating capacity in an NSG mouse model. In concert with those results, MUC1-C silencing in multiple AML cell lines significantly reduced the establishment of AML in vivo. In addition, targeting MUC1-C with silencing or pharmacologic inhibition with GO-203 led to a decrease in active ß-catenin levels and, in-turn, down-regulation of survivin, a critical mediator of leukaemia cell survival. Targeting MUC1-C was also associated with increased sensitivity of AML cells to Cytarabine (Ara-C) treatment by a survivin-dependent mechanism. Notably, low MUC1 and survivin gene expression were associated with better clinical outcomes in patients with AML. These findings emphasize the importance of MUC1-C to myeloid leukaemogenesis and resistance to treatment by driving survivin expression. Our findings also highlight the potential translational relevance of combining GO-203 with Ara-C for the treatment of patients with AML.

13.
Blood ; 127(21): 2587-97, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-26907633

RESUMO

Multiple myeloma (MM) cell lines and primary tumor cells are addicted to the MYC oncoprotein for survival. Little is known, however, about how MYC expression is upregulated in MM cells. The mucin 1 C-terminal subunit (MUC1-C) is an oncogenic transmembrane protein that is aberrantly expressed in MM cell lines and primary tumor samples. The present studies demonstrate that targeting MUC1-C with silencing by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 editing or with the GO-203 inhibitor is associated with downregulation of MYC messenger RNA and protein. The results show that MUC1-C occupies the MYC promoter and thereby activates the MYC gene by a ß-catenin/transcription factor 4 (TCF4)-mediated mechanism. In this way, MUC1-C (1) increases ß-catenin occupancy on the MYC promoter, (2) forms a complex with ß-catenin and TCF4, and, in turn, (3) drives MYC transcription. Analysis of MM cells using quantitative real-time reverse transcription polymerase chain reaction arrays further demonstrated that silencing MUC1-C is associated with downregulation of MYC target genes, including CCND2, hTERT, and GCLC Analysis of microarray data sets further demonstrated that MUC1 levels positively correlate with MYC expression in MM progression and in primary cells from over 800 MM patients. These findings collectively provide convincing evidence that MUC1-C drives MYC expression in MM.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Mucina-1/biossíntese , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Elementos de Resposta , Transcrição Gênica , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Ciclina D2/biossíntese , Ciclina D2/genética , Glutamato-Cisteína Ligase/biossíntese , Glutamato-Cisteína Ligase/genética , Humanos , Mucina-1/genética , Mieloma Múltiplo/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-myc/genética , Telomerase/biossíntese , Telomerase/genética , beta Catenina/genética , beta Catenina/metabolismo
14.
Nanomedicine ; 14(4): 1301-1313, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29641982

RESUMO

Paclitaxel (PTX) is a microtubule inhibitor administered as an albumin-bound nanoformulation for the treatment of breast cancer. However, the effectiveness of PTX is limited by resistance mechanisms mediated in part by upregulation of the anti-apoptotic BCL-2 and P-glycoprotein (P-gp). Present investigation was designed to study the synergistic potential of NuBCP-9 and PTX loaded polymeric nanoparticles to minimize the dose and improve the efficacy and safety. PTX and NuBCP-9 loaded polylactic acid-polyethylene glycol-polypropylene glycol-polyethylene glycol [PLA-(PEG-PPG-PEG)] nanoparticles were prepared by double emulsion solvent evaporation method. PTX and NuBCP-9 loaded NPs displayed an average size of 90 nm with spherical morphology. PTX and NuBCP-9 dual loaded NPs reducedIC50 by ~40-fold and acted synergistically. Treatment of the syngeneic EAT mice with PTX-NuBCP-9/NPs resulted in improved efficacy than that alone treated mice. Overall, the concomitant delivery PTX and NuBCP-9 loaded NPs showed superior activity than that of PTX and NuBCP-9 alone treated mice.


Assuntos
Nanopartículas/química , Oligopeptídeos/química , Paclitaxel/química , Polímeros/química , Albuminas/química , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7
15.
Mol Cancer ; 16(1): 33, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28153010

RESUMO

BACKGROUND: Colorectal cancer is third most common malignancy and is the second most common cause of cancer-related death. The MUC1 heterodimeric protein is aberrantly overexpressed in colorectal cancer and has been linked to poor outcomes in this disease. Here, we investigate the effects of the MUC1-C subunit inhibitor (GO-203), which disrupts MUC1-C homo-oligomerization, on human colorectal cancer cells. METHODS: TIGAR mRNA level was determined using qRT-PCR. Western blotting was used to measure TIGAR protein level and AKT-mTOR-S6K1 pathways. Reactive oxygen species and apoptosis were measured by flow cytometry. Effect of MUC1-C peptide, GO-203 was studied on colorectal xenograft tumors. Immunohistochemistry was utilized for TIGAR staining. RESULTS: Treatment of MUC1-overexpressing SKCO-1 and Colo-205 colon cancer cells with GO-203 was associated with downregulation of the TP53-inducible glycolysis and apoptosis regulator (TIGAR) protein. TIGAR promotes the shunting of glycolytic intermediates into the pentose phosphate pathway and thus is of importance for maintaining redox balance. We show that GO-203-induced suppression of TIGAR is mediated by inhibition of AKT and the downstream mTOR pathway. The results also demonstrate that targeting MUC1-C blocks eIF4A cap-dependent translation of TIGAR. In concert with these results, GO-203-induced suppression of TIGAR was associated with decreases in GSH levels. GO-203 treatment also resulted in increases in reactive oxygen species (ROS) and loss of mitochondrial transmembrane potential. Consistent with these results, GO-203 inhibited the growth of colon cancer cells in vitro and as xenografts in nude mice. Inhibition of MUC1-C also downregulated TIGAR expression in xenograft tissues. CONCLUSIONS: These findings indicate that MUC1-C is a potential target for the treatment of colorectal cancer. Colorectal cancer patients who overexpress MUC1-C may be candidates for treatment with the MUC1-C inhibitor alone or in combination therapy with other agents.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mucina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Glutationa/metabolismo , Humanos , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mucina-1/química , Mucina-1/genética , Oxirredução , Peptídeos/farmacologia , Monoéster Fosfórico Hidrolases , Biossíntese de Proteínas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Br J Haematol ; 178(6): 914-926, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28643330

RESUMO

Lenalidomide (LEN) acts directly on multiple myeloma (MM) cells by inducing cereblon-mediated degradation of interferon regulatory factor 4, Ikaros (IKZF)1 and IKZF3, transcription factors that are essential for MM cell survival. The mucin 1 (MUC1) C-terminal transmembrane subunit (MUC1-C) oncoprotein is aberrantly expressed by MM cells and protects against reactive oxygen species (ROS)-mediated MM cell death. The present studies demonstrate that targeting MUC1-C with GO-203, a cell-penetrating peptide inhibitor of MUC1-C homodimerization, is more than additive with LEN in downregulating the WNT/ß-catenin pathway, suppressing MYC, and inducing late apoptosis/necrosis. We show that the GO-203/LEN combination acts by synergistically increasing ROS and, in turn, suppressing ß-catenin. LEN resistance has been linked to activation of the WNT/ß-catenin→CD44 pathway. In this regard, our results further demonstrate that targeting MUC1-C is effective against LEN-resistant MM cells. Moreover, GO-203 resensitized LEN-resistant MM cells to LEN treatment in association with suppression of ß-catenin and CD44. Targeting MUC1-C also resulted in downregulation of CD44 on the surface of primary MM cells. These findings, and the demonstration that expression of MUC1 and CD44 significantly correlate in microarrays from primary MM cells, provide support for combining GO-203 with LEN in the treatment of MM and in LEN-resistance.


Assuntos
Mucina-1/efeitos dos fármacos , Mieloma Múltiplo/patologia , Talidomida/análogos & derivados , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/metabolismo , Lenalidomida , Terapia de Alvo Molecular/métodos , Mucina-1/metabolismo , Mieloma Múltiplo/metabolismo , Oxirredução/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Talidomida/administração & dosagem , Talidomida/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos
17.
Br J Haematol ; 176(6): 929-938, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28107546

RESUMO

Multiple myeloma (MM) is a lethal haematological malignancy that arises in the context of a tumour microenvironment that promotes resistance to apoptosis and immune escape. In the present study, we demonstrate that co-culture of MM cells with stromal cells results in increased resistance to cytotoxic and biological agents as manifested by decreased rates of cell death following exposure to alkylating agents and the proteosome inhibitor, bortezomib. To identify the mechanism of increased resistance, we examined the effect of the co-culture of MM cells with stroma cells, on expression of the MUC1 oncogene, known to confer tumour cells with resistance to apoptosis and necrosis. Co-culture of stroma with MM cells resulted in increased MUC1 expression by tumour cells. The effect of stromal cell co-culture on MUC1 expression was not dependent on cell contact and was therefore thought to be due to soluble factors secreted by the stromal cells into the microenvironment. We demonstrated that MUC1 expression was mediated by interleukin-6 and subsequent up-regulation of the JAK-STAT pathway. Interestingly, the effect of stromal cell co-culture on tumour resistance was partially reversed by silencing of MUC1 in MM cells, consistent with the potential role of MUC1 in mediating resistance to cytotoxic-based therapies.


Assuntos
Medula Óssea/metabolismo , Medula Óssea/patologia , Comunicação Celular , Mucina-1/biossíntese , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Estromais/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Inativação Gênica/efeitos dos fármacos , Humanos , Janus Quinase 2/metabolismo , Mucina-1/genética , Mieloma Múltiplo/genética , Inibidores de Proteassoma/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Blood ; 126(3): 354-62, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26048911

RESUMO

Cutaneous T-cell lymphoma (CTCL) is an aggressive neoplasm with limited treatments for patients with advanced disease. The mucin 1 C-terminal subunit (MUC1-C) oncoprotein plays a critical role in regulating cell proliferation, apoptosis, and protection from cytotoxic injury mediated by reactive oxygen species (ROS). Although CTCL cells exhibit resistance to ROS-induced apoptosis, the expression and functional significance of MUC1 in CTCL have not been previously investigated. Present studies demonstrate that MUC1-C is overexpressed in CTCL cell lines and primary CTCL cells but is absent in resting T cells from healthy donors and B-cell lymphoma cells. We have developed a cell-penetrating peptide that disrupts homodimerization of the MUC1-C subunit necessary for its nuclear translocation and downstream signaling. We show that treatment of CTCL cells with the MUC1-C inhibitor is associated with downregulation of the p53-inducible regulator of glycolysis and apoptosis and decreases in reduced NAD phosphate and glutathione levels. In concert with these results, targeting MUC1-C in CTCL cells increased ROS and, in turn, induced ROS-mediated late apoptosis/necrosis. Targeting MUC1-C in CTCL tumor xenograft models demonstrated significant decreases in disease burden. These findings indicate that MUC1-C maintains redox balance in CTCL cells and is thereby a novel target for the treatment of patients with CTCL.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linfoma Cutâneo de Células T/metabolismo , Mucina-1/metabolismo , Peptídeos/farmacologia , Neoplasias Cutâneas/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Western Blotting , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Glutationa/metabolismo , Humanos , Técnicas Imunoenzimáticas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mucina-1/química , Mucina-1/genética , NADP/metabolismo , Necrose , Estresse Oxidativo , Monoéster Fosfórico Hidrolases , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nanomedicine ; 13(5): 1833-1839, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28343015

RESUMO

Many cancers fail to respond to immunotherapy as a result of immune suppression by the tumor microenvironment. The exogenous expression of immune cytokines to reprogram the tumor microenvironment represents an approach to circumvent this suppression. The present studies describe the development of a novel dual nanoparticle (DNP) system for driving DNA expression vectors encoding inflammatory cytokines in tumor cells. The DNP system consists of a DNA expression vector-cationic peptide nanocomplex (NC) surrounded by a diblock polymeric NP. Tumor necrosis factor alpha (TNF) was selected as the prototype cytokine for this system, based on its pleotropic inflammatory and anti-cancer activities. Our results demonstrate that the DNP system is highly effective in driving expression of TNF in tumor cells. We also demonstrate that the DNPs are effective in inducing apoptosis and anti-tumor activity. These findings support a novel immunotherapeutic approach for the intratumoral delivery of DNA vectors that express inflammatory cytokines.


Assuntos
Vetores Genéticos , Nanopartículas , Microambiente Tumoral , Fator de Necrose Tumoral alfa , Citocinas , DNA , Humanos , Inflamação , Neoplasias/tratamento farmacológico
20.
Blood ; 123(19): 2997-3006, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24632713

RESUMO

The proteosome inhibitor bortezomib (BTZ) induces endoplasmic reticulum and oxidative stress in multiple myeloma (MM) cells. The mucin 1 C-terminal subunit (MUC1-C) oncoprotein is aberrantly expressed in most MM cells, and targeting MUC1-C with GO-203, a cell-penetrating peptide inhibitor of MUC1-C homodimerization, is effective in inducing reactive oxygen species (ROS)-mediated MM cell death. The present results demonstrate that GO-203 and BTZ synergistically downregulate expression of the p53-inducible regulator of glycolysis and apoptosis (TIGAR), which promotes shunting of glucose-6-phosphate into the pentose phosphate pathway to generate reduced glutathione (GSH). In turn, GO-203 blocks BTZ-induced increases in GSH and results in synergistic increases in ROS and MM cell death. The results also demonstrate that GO-203 is effective against BTZ-resistant MM cells. We show that BTZ resistance is associated with BTZ-induced increases in TIGAR and GSH levels, and that GO-203 resensitizes BTZ-resistant cells to BTZ treatment by synergistically downregulating TIGAR and GSH. The GO-203/BTZ combination is thus highly effective in killing BTZ-resistant MM cells. These findings support a model in which targeting MUC1-C is synergistic with BTZ in suppressing TIGAR-mediated regulation of ROS levels and provide an experimental rationale for combining GO-203 with BTZ in certain settings of BTZ resistance.


Assuntos
Ácidos Borônicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mucina-1/metabolismo , Peptídeos/farmacologia , Pirazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Bortezomib , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Glutationa/metabolismo , Humanos , Immunoblotting , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Monoéster Fosfórico Hidrolases , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA