Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175716

RESUMO

Molecular diagnostics in healthcare relies increasingly on genomic and transcriptomic methodologies and requires appropriate tissue specimens from which nucleic acids (NA) of sufficiently high quality can be obtained. Besides the duration of ischemia and fixation type, NA quality depends on a variety of other pre-analytical parameters, such as storage conditions and duration. It has been discussed that the improper dehydration of tissue during processing influences the quality of NAs and the shelf life of fixed tissue. Here, we report on establishing a method for determining the amount of residual water in fixed, paraffin-embedded tissue (fixed by neutral buffered formalin or a non-crosslinking fixative) and its correlation to the performance of NAs in quantitative real-time polymerase chain reaction (qRT-PCR) analyses. The amount of residual water depended primarily on the fixative type and the dehydration protocol and, to a lesser extent, on storage conditions and time. Moreover, we found that these parameters were associated with the qRT-PCR performance of extracted NAs. Besides the cross-linking of NAs and the modification of nucleobases by formalin, the hydrolysis of NAs by residual water was found to contribute to reduced qRT-PCR performance. The negative effects of residual water on NA stability are not only important for the design and interpretation of research but must also be taken into account in clinical diagnostics where the reanalysis of archived tissue from a primary tumor may be required (e.g., after disease recurrence). We conclude that improving the shelf life of fixed tissue requires meticulous dehydration and dry storage to minimize the degradative influence of residual water on NAs.


Assuntos
Desidratação , Ácidos Nucleicos , Humanos , Fixadores , Fixação de Tecidos/métodos , Inclusão em Parafina/métodos , Umidade , Ácidos Nucleicos/genética , Formaldeído
2.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207662

RESUMO

p62/Sequestosome-1 (p62) is a multifunctional adaptor protein and is also a constant component of disease-associated protein aggregates, including Mallory-Denk bodies (MDBs), in steatohepatitis and hepatocellular carcinoma. We investigated the interaction of the two human p62 isoforms, p62-H1 (full-length isoform) and p62-H2 (partly devoid of PB1 domain), with keratins 8 and 18, the major components of MDBs. In human liver, p62-H2 is expressed two-fold higher compared to p62-H1 at the mRNA level and is present in slightly but not significantly higher concentrations at the protein level. Co-transfection studies in CHO-K1 cells, PLC/PRF/5 cells as well as p62- total-knockout and wild-type mouse fibroblasts revealed marked differences in the cytoplasmic distribution and aggregation behavior of the two p62 isoforms. Transfection-induced overexpression of p62-H2 generated large cytoplasmic aggregates in PLC/PRF/5 and CHO-K1 cells that mostly co-localized with transfected keratins resembling MDBs or (transfection without keratins) intracytoplasmic hyaline bodies. In fibroblasts, however, transfected p62-H2 was predominantly diffusely distributed in the cytoplasm. Aggregation of p62-H2 and p62ΔSH2 as well as the interaction with K8 (but not with K18) involves acquisition of cross-ß-sheet conformation as revealed by staining with luminescent conjugated oligothiophenes. These results indicate the importance of considering p62 isoforms in protein aggregation disease.


Assuntos
Queratinas/metabolismo , Agregados Proteicos , Proteína Sequestossoma-1/metabolismo , Animais , Células CHO , Cricetulus , Humanos , Queratinas/genética , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Sequestossoma-1/genética
3.
Front Immunol ; 15: 1282680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318189

RESUMO

Background: Helicobacter pylori (H. pylori) uses various strategies that attenuate mucosal immunity to ensure its persistence in the stomach. We recently found evidence that H. pylori might modulate the natural killer group 2, member 2 (NKG2D) system. The NKG2D receptor and its ligands are a major activation system of natural killer and cytotoxic T cells, which are important for mucosal immunity and tumor immunosurveillance. The NKG2D system allows recognition and elimination of infected and transformed cells, however viruses and cancers often subvert its activation. Here we aimed to identify a potential evasion of the NKG2D system in H. pylori infection. Methods: We analyzed expression of NKG2D system genes in gastric tissues of H. pylori gastritis and gastric cancer patients, and performed cell-culture based infection experiments using H. pylori isogenic mutants and epithelial and NK cell lines. Results: In biopsies of H. pylori gastritis patients, NKG2D receptor expression was reduced while NKG2D ligands accumulated in the lamina propria, suggesting NKG2D evasion. In vitro, H. pylori induced the transcription and proteolytic shedding of NKG2D ligands in stomach epithelial cells, and these effects were associated with specific H. pylori virulence factors. The H. pylori-driven release of soluble NKG2D ligands reduced the immunogenic visibility of infected cells and attenuated the cytotoxic activity of effector immune cells, specifically the anti-tumor activity of NK cells. Conclusion: H. pylori manipulates the NKG2D system. This so far unrecognized strategy of immune evasion by H. pylori could potentially facilitate chronic bacterial persistence and might also promote stomach cancer development by allowing transformed cells to escape immune recognition and grow unimpeded to overt malignancy.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Evasão da Resposta Imune , Infecções por Helicobacter/metabolismo , Células Matadoras Naturais , Neoplasias Gástricas/patologia , Gastrite/metabolismo , Peptídeo Hidrolases/metabolismo
4.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35349484

RESUMO

The lung airways are constantly exposed to inhaled toxic substances, resulting in cellular damage that is repaired by local expansion of resident bronchiolar epithelial club cells. Disturbed bronchiolar epithelial damage repair lies at the core of many prevalent lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, and lung cancer. However, it is still not known how bronchiolar club cell energy metabolism contributes to this process. Here, we show that adipose triglyceride lipase (ATGL), the rate-limiting enzyme for intracellular lipolysis, is critical for normal club cell function in mice. Deletion of the gene encoding ATGL, Pnpla2 (also known as Atgl), induced substantial triglyceride accumulation, decreased mitochondrial numbers, and decreased mitochondrial respiration in club cells. This defect manifested as bronchiolar epithelial thickening and increased airway resistance under baseline conditions. After naphthalene­induced epithelial denudation, a regenerative defect was apparent. Mechanistically, dysfunctional PPARα lipid-signaling underlies this phenotype because (a) ATGL was needed for PPARα lipid-signaling in regenerating bronchioles and (b) administration of the specific PPARα agonist WY14643 restored normal bronchiolar club cell ultrastructure and regenerative potential. Our data emphasize the importance of the cellular energy metabolism for lung epithelial regeneration and highlight the significance of ATGL-mediated lipid catabolism for lung health.


Assuntos
Lipólise , PPAR alfa , Animais , Bronquíolos , Lipase/genética , Lipase/metabolismo , Lipólise/fisiologia , Camundongos , PPAR alfa/metabolismo , Regeneração , Triglicerídeos/metabolismo
5.
PLoS One ; 11(3): e0151383, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974150

RESUMO

BACKGROUND: Requirements on tissue fixatives are getting more demanding as molecular analysis becomes increasingly relevant for routine diagnostics. Buffered formaldehyde in pathology laboratories for tissue fixation is known to cause chemical modifications of biomolecules which affect molecular testing. A novel non-crosslinking tissue preservation technology, PAXgene Tissue (PAXgene), was developed to preserve the integrity of nucleic acids in a comparable way to cryopreservation and also to preserve morphological features comparable to those of formalin fixed samples. METHODS: Because of the excellent preservation of biomolecules by PAXgene we investigated its pathogen inactivation ability and biosafety in comparison to formalin by in-vitro testing of bacteria, human relevant fungi and human cytomegalovirus (CMV). Guidelines for testing disinfectants served as reference for inactivation assays. Furthermore, we tested the properties of PAXgene for detection of pathogens by PCR based assays. RESULTS: All microorganisms tested were similarly inactivated by PAXgene and formalin except Clostridium sporogenes, which remained viable in seven out of ten assays after PAXgene treatment and in three out of ten assays after formalin fixation. The findings suggest that similar biosafety measures can be applied for PAXgene and formalin fixed samples. Detection of pathogens in PCR-based diagnostics using two CMV assays resulted in a reduction of four to ten quantification cycles of PAXgene treated samples which is a remarkable increase of sensitivity. CONCLUSION: PAXgene fixation might be superior to formalin fixation when molecular diagnostics and highly sensitive detection of pathogens is required in parallel to morphology assessment.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Fixadores/farmacologia , Patologia Molecular , Fixação de Tecidos/métodos , Bactérias/genética , Citomegalovirus/efeitos dos fármacos , Formaldeído/farmacologia , Fungos/genética , Humanos , Viabilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real , Inativação de Vírus/efeitos dos fármacos
6.
PLoS One ; 11(8): e0161083, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27526095

RESUMO

Mallory-Denk bodies (MDBs) are hepatocytic protein aggregates found in steatohepatitis and several other chronic liver diseases as well as hepatocellular carcinoma. MDBs are mainly composed of phosphorylated keratins and stress protein p62/Sequestosome-1 (p62), which is a common component of cytoplasmic aggregates in a variety of protein aggregation diseases. In contrast to the well-established role of keratins, the role of p62 in MDB pathogenesis is still elusive. We have generated total and hepatocyte-specific p62 knockout mice, fed them with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to induce MDBs and allowed the mice to recover from DDC intoxication on a standard diet to investigate the role of p62 in MDB formation and elimination. In the absence of p62, smaller, granular and less distinct MDBs appeared, which failed to mature to larger and compact inclusions. Moreover, p62 deficiency impaired the binding of other proteins such as NBR1 and Hsp25 to MDBs and altered the cellular defense mechanism by downregulation of Nrf2 target genes. Upon recovery from DDC intoxication on a standard diet, there was an enhanced reduction of p62-deficient MDBs, which was accompanied by a pronounced decrease in ubiquitinated proteins. Our data provide strong evidence that keratin aggregation is the initial step in MDB formation in steatohepatitis-related mouse models. Interaction of p62 with keratin aggregates then leads to maturation i.e., enlargement and stabilization of the MDBs as well as recruitment of other MDB-associated proteins.


Assuntos
Corpos de Mallory/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Técnicas de Inativação de Genes , Hepatócitos/citologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas/metabolismo , Proteína Sequestossoma-1/deficiência , Proteína Sequestossoma-1/genética
7.
Cancer Res ; 76(21): 6382-6395, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543603

RESUMO

Hypofertility is a risk factor for the development of testicular germ cell tumors (TGCT), but the initiating event linking these pathologies is unknown. We hypothesized that excessive planar division of undifferentiated germ cells promotes their self-renewal and TGCT development. However, our results obtained from mouse models and seminoma patients demonstrated the opposite. Defective planar divisions of undifferentiated germ cells caused their premature exit from the seminiferous tubule niche, resulting in germ cell depletion, hypofertility, intratubular germ cell neoplasias, and seminoma development. Oriented divisions of germ cells, which determine their fate, were regulated by spindle-associated RHAMM-a function we found to be abolished in 96% of human seminomas. Mechanistically, RHAMM expression is regulated by the testis-specific polyadenylation protein CFIm25, which is downregulated in the human seminomas. These results suggested that spindle misorientation is oncogenic, not by promoting self-renewing germ cell divisions within the niche, but by prematurely displacing proliferating cells from their normal epithelial milieu. Furthermore, they suggested RHAMM loss-of-function and spindle misorientation as an initiating event underlying both hypofertility and TGCT initiation. These findings identify spindle-associated RHAMM as an intrinsic regulator of male germ cell fate and as a gatekeeper preventing initiation of TGCTs. Cancer Res; 76(21); 6382-95. ©2016 AACR.


Assuntos
Proteínas da Matriz Extracelular/fisiologia , Fertilidade , Receptores de Hialuronatos/fisiologia , Neoplasias Embrionárias de Células Germinativas/etiologia , Seminoma/etiologia , Fuso Acromático/química , Neoplasias Testiculares/etiologia , Testículo/citologia , Animais , Apoptose , Divisão Celular , Proteínas da Matriz Extracelular/análise , Células HeLa , Humanos , Receptores de Hialuronatos/análise , Masculino , Camundongos , Neoplasias Embrionárias de Células Germinativas/patologia , Seminoma/patologia , Neoplasias Testiculares/patologia , Proteína Supressora de Tumor p53/fisiologia
8.
Anticancer Res ; 34(6): 2883-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24922651

RESUMO

AIM: Endometrial stromal sarcoma (ESS) is a rare gynecological mesenchymal malignancy with only few therapeutic options. This study aimed to investigate the efficacy of the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA) combined with inhibitors of the phosphoinositid-3-Kinase (PI3K) pathway in ESS therapy. MATERIALS AND METHODS: The effects of SAHA combined with inhibitor of PI3K (LY294002, LY), mammalian target of rapamycin mTOR (rapamycin), and their combination on cell growth and the PI3K pathway in two ESS cell lines (ESS-1 and MES-SA) and one non-neoplastic cell line HESC, were investigated. RESULTS: SAHA reduced growth of the three cell lines by inhibiting protein kinase B AKT and mTOR/p70S6K cascade activation. SAHA combined with LY or rapamycin, or both, synergistically reduced p-p70S6K and p-4E-BP1 levels. SAHA combined with LY and rapamycin led to the strongest growth inhibition and slowest growth recovery among the combination treatments. CONCLUSION: SAHA combined with inhibition of PI3K and mTOR could represent an efficient therapy option for patients with ESS.


Assuntos
Neoplasias do Endométrio/metabolismo , Histona Desacetilases/química , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sarcoma do Estroma Endometrial/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Proteínas de Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Inibidores Enzimáticos/farmacologia , Feminino , Imunofluorescência , Histona Desacetilases/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sarcoma do Estroma Endometrial/tratamento farmacológico , Sarcoma do Estroma Endometrial/patologia , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
9.
PLoS One ; 9(5): e96690, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24798445

RESUMO

The in situ proximity ligation assay (isPLA) is an increasingly used technology for in situ detection of protein interactions, post-translational modifications, and spatial relationships of antigens in cells and tissues, in general. In order to test its performance we compared isPLA with immunofluorescence microscopy by analyzing protein interactions in cytoplasmic protein aggregates, so-called Mallory Denk bodies (MDBs). These structures represent protein inclusions in hepatocytes typically found in human steatohepatitis and they can be generated in mice by feeding of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC). We investigated the colocalization of all three key MDB components, namely keratin 8 (K8), keratin 18 (K18), and p62 (sequestosome 1) by isPLA and immunofluorescence microscopy. Sensitivity and specificity of isPLA was assessed by using Krt8-/- and Krt18-/- mice as biological controls, along with a series of technical controls. isPLA signal visualization is a robust technology with excellent sensitivity and specificity. The biological relevance of signals generated critically depends on the performance of antibodies used, which requires careful testing of antibodies like in immunofluorescence microscopy. There is a clear advantage of isPLA in visualizing protein co-localization, particularly when antigens are present at markedly different concentrations. Furthermore, isPLA is superior to confocal microscopy with respect to spatial resolution of colocalizing antigens. Disadvantages compared to immunofluorescence are increased costs and longer duration of the laboratory protocol.


Assuntos
Fígado Gorduroso/fisiopatologia , Técnicas Genéticas , Corpos de Mallory/fisiologia , Mapeamento de Interação de Proteínas , Animais , Citoplasma/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/induzido quimicamente , Hepatócitos/imunologia , Hepatócitos/metabolismo , Queratinas/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Processamento de Proteína Pós-Traducional , Piridinas , Reprodutibilidade dos Testes , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA