Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 290(3): 1729-42, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25451916

RESUMO

The maintenance of bone homeostasis requires tight coupling between bone-forming osteoblasts and bone-resorbing osteoclasts. However, the precise molecular mechanism(s) underlying the differentiation and activities of these specialized cells are still largely unknown. Here, we identify choline kinase ß (CHKB), a kinase involved in the biosynthesis of phosphatidylcholine, as a novel regulator of bone homeostasis. Choline kinase ß mutant mice (flp/flp) exhibit a systemic low bone mass phenotype. Consistently, osteoclast numbers and activity are elevated in flp/flp mice. Interestingly, osteoclasts derived from flp/flp mice exhibit reduced sensitivity to excessive levels of extracellular calcium, which could account for the increased bone resorption. Conversely, supplementation of cytidine 5'-diphosphocholine in vivo and in vitro, a regimen that bypasses CHKB deficiency, restores osteoclast numbers to physiological levels. Finally, we demonstrate that, in addition to modulating osteoclast formation and function, loss of CHKB corresponds with a reduction in bone formation by osteoblasts. Taken together, these data posit CHKB as a new modulator of bone homeostasis.


Assuntos
Colina Quinase/genética , Mutação , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fosforilcolina/metabolismo , Animais , Densidade Óssea , Reabsorção Óssea , Osso e Ossos/metabolismo , Cálcio/metabolismo , Proliferação de Células , Homeostase , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Mutagênese , Osteoblastos/citologia , Osteoclastos/citologia , Fenótipo , Microtomografia por Raio-X
2.
Nat Commun ; 14(1): 906, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810735

RESUMO

Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast's 'resorptive apparatus'. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast's unique secretory organelle and a potential therapeutic target for metabolic bone diseases.


Assuntos
Reabsorção Óssea , Osteoclastos , Camundongos , Animais , Osteoclastos/metabolismo , Transporte Biológico , Lisossomos/metabolismo , Osso e Ossos/metabolismo , Membrana Celular/metabolismo , Reabsorção Óssea/metabolismo
3.
Small GTPases ; 11(5): 354-370, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-29455593

RESUMO

The ability to rapidly respond to applied force underpins cell/tissue homeostasis. This response is mediated by mechanotransduction pathways that regulate remodeling and tension of the actomyosin cytoskeleton to counterbalance external forces. Enhanced extracellular matrix tension hyper-activates mechanotransduction and characterizes diseased states such as cancer, but is also required for normal epidermal regeneration. While the impact of extracellular matrix tension on signaling and cell biology are well appreciated, that of acute compressive force is under-studied. We show here that acute compressive force applied to cells and tissues in a native 3-dimensional context elevates RHOA-GTP levels and increases regulatory myosin phosphorylation, actomyosin contractility and tension via ROCK. In consequence, cell proliferation was increased, as was the expression of regulators of epithelial-mesenchymal transition. Pharmacological inhibition of ROCK abrogated myosin phosphorylation, but not RHOA activation. Our results strongly suggest that acute compressive stress impairs cellular homeostasis in a RHO/ROCK-dependent manner, with implications for disease states such as cancer.


Assuntos
Quinases Associadas a rho/metabolismo , Actomiosina/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Transdução de Sinais , Estresse Fisiológico , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Nat Cell Biol ; 22(7): 882-895, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451439

RESUMO

It is well accepted that cancers co-opt the microenvironment for their growth. However, the molecular mechanisms that underlie cancer-microenvironment interactions are still poorly defined. Here, we show that Rho-associated kinase (ROCK) in the mammary tumour epithelium selectively actuates protein-kinase-R-like endoplasmic reticulum kinase (PERK), causing the recruitment and persistent education of tumour-promoting cancer-associated fibroblasts (CAFs), which are part of the cancer microenvironment. An analysis of tumours from patients and mice reveals that cysteine-rich with EGF-like domains 2 (CRELD2) is the paracrine factor that underlies PERK-mediated CAF education downstream of ROCK. We find that CRELD2 is regulated by PERK-regulated ATF4, and depleting CRELD2 suppressed tumour progression, demonstrating that the paracrine ROCK-PERK-ATF4-CRELD2 axis promotes the progression of breast cancer, with implications for cancer therapy.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Moléculas de Adesão Celular/metabolismo , Reprogramação Celular , Proteínas da Matriz Extracelular/metabolismo , eIF-2 Quinase/metabolismo , Quinases Associadas a rho/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Moléculas de Adesão Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Camundongos , Comunicação Parácrina , eIF-2 Quinase/genética , Quinases Associadas a rho/genética
6.
Oncogene ; 38(8): 1151-1165, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30250299

RESUMO

While the two mammalian sphingosine kinases, SK1 and SK2, both catalyze the generation of pro-survival sphingosine 1-phosphate (S1P), their roles vary dependent on their different subcellular localization. SK1 is generally found in the cytoplasm or at the plasma membrane where it can promote cell proliferation and survival. SK2 can be present at the plasma membrane where it appears to have a similar function to SK1, but can also be localized to the nucleus, endoplasmic reticulum or mitochondria where it mediates cell death. Although SK2 has been implicated in cancer initiation and progression, the mechanisms regulating SK2 subcellular localization are undefined. Here, we report that SK2 interacts with the intermediate chain subunits of the retrograde-directed transport motor complex, cytoplasmic dynein 1 (DYNC1I1 and -2), and we show that this interaction, particularly with DYNC1I1, facilitates the transport of SK2 away from the plasma membrane. DYNC1I1 is dramatically downregulated in patient samples of glioblastoma (GBM), where lower expression of DYNC1I1 correlates with poorer patient survival. Notably, low DYNC1I1 expression in GBM cells coincided with more SK2 localized to the plasma membrane, where it has been recently implicated in oncogenesis. Re-expression of DYNC1I1 reduced plasma membrane-localized SK2 and extracellular S1P formation, and decreased GBM tumor growth and tumor-associated angiogenesis in vivo. Consistent with this, chemical inhibition of SK2 reduced the viability of patient-derived GBM cells in vitro and decreased GBM tumor growth in vivo. Thus, these findings demonstrate a tumor-suppressive function of DYNC1I1, and uncover new mechanistic insights into SK2 regulation which may have implications in targeting this enzyme as a therapeutic strategy in GBM.


Assuntos
Dineínas do Citoplasma/genética , Genes Supressores de Tumor , Glioblastoma/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Células HEK293 , Humanos , Lisofosfolipídeos/genética , Camundongos , Esfingosina/análogos & derivados , Esfingosina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Burns ; 41(3): 558-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25305071

RESUMO

Bone loss after severe burn injury is well established, and is thought to be a consequence of the severe hyper-metabolic response as well as changes in cytokine and glucocorticoid levels that decrease bone synthesis and increase rate of loss. However, 90% of presentations are for non-severe burns which do not elicit this response. Little is known about whether these non-severe injuries may also affect bone tissue, and whether other mechanisms may be involved. To investigate whether bone loss occurs after a non-severe burn injury we used a mouse model of an approximately 8% total body surface area (TBSA) full-thickness burn and micro-CT. We also assessed whether blocking TNF-α after a burn injury by administration of an antibody could modulate the impacts of the burn on bone tissue. There was a significant loss of trabecular bone volume of (3.27% compared to 5.27%, p=0.0051) after non-severe burn injury. Trabecular number was significantly decreased (0.57/mm after injury compared to 1.02/mm controls, p=0.0051) and spacing increased after burn injury (0.40 compared to 0.28, p=0.0083). Anti-TNF-α antibodies significantly improved trabecular bone volume (8.53%, p=0.0034) and number after burn injury (1.28/mm, p=0.0034). There was no significant change observed in cortical bone after burn injury or administration of anti-TNF-α antibodies. These findings show that non-severe burn injury can lead to changes in bone metabolism. Monitoring bone density in patients with non-severe injuries and interventions to limit the impacts of the inflammatory storm may benefit patient recovery and outcomes.


Assuntos
Doenças Ósseas Metabólicas/imunologia , Queimaduras/imunologia , Fêmur/diagnóstico por imagem , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/etiologia , Queimaduras/complicações , Camundongos , Fator de Necrose Tumoral alfa/imunologia , Microtomografia por Raio-X
8.
Dev Cell ; 35(6): 759-74, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26702834

RESUMO

ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities.


Assuntos
Proteínas 14-3-3/metabolismo , Proliferação de Células/fisiologia , Homeostase/fisiologia , Transdução de Sinais/fisiologia , Cicatrização/fisiologia , Quinases Associadas a rho/metabolismo , Animais , Epiderme/metabolismo , Camundongos
9.
Pathology ; 44(4): 357-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22614711

RESUMO

AIM: Approximately 40-60% of melanomas from Caucasian populations carry activating mutations in the BRAF oncogene, with the most common being the p.Val600Glu (V600E) hotspot mutation in exon 15. The aim of the present study was to investigate the frequency of the less common p.Val600Lys (V600K) mutation in metastatic melanoma from a high incidence region. METHOD: Dideoxy sequencing and fluorescent single strand conformation analysis were used to screen for mutations in exon 15 of BRAF in 183 cases of metastatic melanoma. RESULTS: The overall incidence of BRAF mutation (89/183, 49%) was very similar to other large studies of Caucasian populations. However, the frequency of the p.Val600Lys mutation was higher than in most other studies and comprised almost one-third of all BRAF mutations in our cohort (27/89, 30%). CONCLUSION: BRAF p.Val600Lys mutations were present at a relatively high frequency in this cohort of metastatic melanoma patients (27/183, 15%). Assays used to screen for BRAF mutations in the clinic should be robust enough to detect the p.Val600Lys mutation, as this may have therapeutic implications.


Assuntos
Melanoma/genética , Mutação Puntual , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Análise Mutacional de DNA , DNA de Neoplasias/análise , Doenças Endêmicas , Feminino , Humanos , Masculino , Melanoma/secundário , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias Cutâneas/patologia
10.
Clin Biochem ; 45(12): 863-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22465238

RESUMO

OBJECTIVES: To review the current literature on the regulation of bone remodelling at the cellular level. DESIGN AND METHODS: The cellular activities of the cells in the basic multicellular unit (BMU) were evaluated. RESULTS: Bone remodelling requires an intimate cross-talk between osteoclasts and osteoblasts and is tightly coordinated by regulatory proteins that interact through complex autocrine/paracrine mechanisms. Osteocytes, bone lining cells, osteomacs, and vascular endothelial cells also regulate bone remodelling in the BMU via cell signalling networks of ligand-receptor complexes. In addition, through secreted and membrane-bound factors in the bone microenvironment, T and B lymphocytes mediate bone homeostasis in osteoimmunology. CONCLUSIONS: Osteoporosis and other bone diseases occur because multicellular communication within the BMU is disrupted. Understanding the cellular and molecular basis of bone remodelling and the discovery of novel paracrine or coupling factors, such as RANKL, sclerostin, EGFL6 and semaphorin 4D, will lay the foundation for drug development against bone diseases.


Assuntos
Remodelação Óssea , Osso e Ossos/patologia , Animais , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Doenças Ósseas Metabólicas/fisiopatologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Linfócitos/metabolismo , Linfócitos/fisiologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Osteoclastos/fisiologia
11.
J Biol Chem ; 284(21): 14667-76, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19321441

RESUMO

The V-ATPase d2 protein constitutes an important subunit of the V-ATPase proton pump, which regulates bone homeostasis; however, currently little is known about its transcriptional regulation. Here, in an attempt to understand regulation of the V-ATPase d2 promoter, we identified the presence of NFATc1, microphthalmia-associated transcription factor (MITF)- and myocyte enhancer factor 2 (MEF2)-binding sites within the V-ATPase d2 promoter using complementary bioinformatic analyses, chromatin immunoprecipitation, and electromobility shift assay. Intriguingly, activation of the V-ATPase d2 promoter by NFATc1 was enhanced by either MEF2 or MITF overexpression. By comparison, coexpression of MITF and MEF2 did not further enhance V-ATPase d2 promoter activity above that of expression of MITF alone. Consistent with a role in transcriptional regulation, both NFATc1 and MITF proteins translocated from the cytosol to the nucleus during RANKL-induced osteoclastogenesis, whereas MEF2 persisted in the nucleus of both osteoclasts and their mononuclear precursors. Targeted mutation of the putative NFATc1-, MITF-, or MEF2-binding sites in the V-ATPase d2 promoter impaired its transcriptional activation. Additionally retroviral overexpression of MITF or MEF2 in RAW264.7 cells potentiated RANKL-induced osteoclastogenesis and V-ATPase d2 gene expression. Based on these data, we propose that MEF2 and MITF function cooperatively with NFATc1 to transactivate the V-ATPase d2 promoter during RANKL-induced osteoclastogenesis.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , Fatores de Regulação Miogênica/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Regiões Promotoras Genéticas/genética , Ativação Transcricional , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Pareamento de Bases/efeitos dos fármacos , Sequência de Bases , Sítios de Ligação , Células COS , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Chlorocebus aethiops , Fatores de Transcrição MEF2 , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Dados de Sequência Molecular , Fatores de Regulação Miogênica/genética , Fatores de Transcrição NFATC/genética , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ligante RANK/farmacologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA