Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(3): 432-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409259

RESUMO

Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.


Assuntos
Astrócitos , Esclerose Múltipla , Animais , Humanos , Camundongos , Anti-Inflamatórios , Modelos Animais de Doenças , Epigênese Genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Inflamação , Proteômica
2.
Nat Immunol ; 19(5): 1-7, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662171

RESUMO

The cytokine transforming growth factor-ß (TGF-ß) regulates the development and homeostasis of several tissue-resident macrophage populations, including microglia. TGF-ß is not critical for microglia survival but is required for the maintenance of the microglia-specific homeostatic gene signature1,2. Under defined host conditions, circulating monocytes can compete for the microglial niche and give rise to long-lived monocyte-derived macrophages residing in the central nervous system (CNS)3-5. Whether monocytes require TGF-ß for colonization of the microglial niche and maintenance of CNS integrity is unknown. We found that abrogation of TGF-ß signaling in CX3CR1+ monocyte-derived macrophages led to rapid onset of a progressive and fatal demyelinating motor disease characterized by myelin-laden giant macrophages throughout the spinal cord. Tgfbr2-deficient macrophages were characterized by high expression of genes encoding proteins involved in antigen presentation, inflammation and phagocytosis. TGF-ß is thus crucial for the functional integration of monocytes into the CNS microenvironment.


Assuntos
Encéfalo/imunologia , Doenças Desmielinizantes/imunologia , Macrófagos/patologia , Medula Espinal/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Crescimento Transformador beta/metabolismo
3.
Acta Neuropathol ; 147(1): 82, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722375

RESUMO

Aging affects all cell types in the CNS and plays an important role in CNS diseases. However, the underlying molecular mechanisms driving these age-associated changes and their contribution to diseases are only poorly understood. The white matter in the aging brain as well as in diseases, such as Multiple sclerosis is characterized by subtle abnormalities in myelin sheaths and paranodes, suggesting that oligodendrocytes, the myelin-maintaining cells of the CNS, lose the capacity to preserve a proper myelin structure and potentially function in age and certain diseases. Here, we made use of directly converted oligodendrocytes (dchiOL) from young, adult and old human donors to study age-associated changes. dchiOL from all three age groups differentiated in an comparable manner into O4 + immature oligodendrocytes, but the proportion of MBP + mature dchiOL decreased with increasing donor age. This was associated with an increased ROS production and upregulation of cellular senescence markers such as CDKN1A, CDKN2A in old dchiOL. Comparison of the transcriptomic profiles of dchiOL from adult and old donors revealed 1324 differentially regulated genes with limited overlap with transcriptomic profiles of the donors' fibroblasts or published data sets from directly converted human neurons or primary rodent oligodendroglial lineage cells. Methylome analyses of dchiOL and human white matter tissue samples demonstrate that chronological and epigenetic age correlate in CNS white matter as well as in dchiOL and resulted in the identification of an age-specific epigenetic signature. Furthermore, we observed an accelerated epigenetic aging of the myelinated, normal appearing white matter of multiple sclerosis (MS) patients compared to healthy individuals. Impaired differentiation and upregulation of cellular senescence markers could be induced in young dchiOL in vitro using supernatants from pro-inflammatory microglia. In summary, our data suggest that physiological aging as well as inflammation-induced cellular senescence contribute to oligodendroglial pathology in inflammatory demyelinating diseases such as MS.


Assuntos
Envelhecimento , Senescência Celular , Esclerose Múltipla , Oligodendroglia , Humanos , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Senescência Celular/fisiologia , Envelhecimento/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Adulto , Idoso , Pessoa de Meia-Idade , Masculino , Feminino , Adulto Jovem , Inflamação/patologia , Inflamação/metabolismo , Substância Branca/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21
4.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628757

RESUMO

Epigenetic mechanisms can regulate how DNA is expressed independently of sequence and are known to be associated with various diseases. Among those epigenetic mechanisms, DNA methylation (DNAm) is influenced by genotype and the environment, making it an important molecular interface for studying disease etiology and progression. In this study, we examined the whole blood DNA methylation profiles of a large group of people with (pw) multiple sclerosis (MS) compared to those of controls. We reveal that methylation differences in pwMS occur independently of known genetic risk loci and show that they more strongly differentiate disease (AUC = 0.85, 95% CI 0.82-0.89, p = 1.22 × 10-29) than known genetic risk loci (AUC = 0.72, 95% CI: 0.66-0.76, p = 9.07 × 10-17). We also show that methylation differences in MS occur predominantly in B cells and monocytes and indicate the involvement of cell-specific biological pathways. Overall, this study comprehensively characterizes the immune cell-specific epigenetic architecture of MS.


Assuntos
Monócitos , Esclerose Múltipla , Humanos , Metilação de DNA , Esclerose Múltipla/genética , Linfócitos B , Epigênese Genética
5.
Proc Natl Acad Sci U S A ; 116(19): 9443-9452, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019085

RESUMO

An increasing number of studies reveal the importance of long noncoding RNAs (lncRNAs) in gene expression control underlying many physiological and pathological processes. However, their role in skin wound healing remains poorly understood. Our study focused on a skin-specific lncRNA, LOC105372576, whose expression was increased during physiological wound healing. In human nonhealing wounds, however, its level was significantly lower compared with normal wounds under reepithelialization. We characterized LOC105372576 as a nuclear-localized, RNAPII-transcribed, and polyadenylated lncRNA. In keratinocytes, its expression was induced by TGF-ß signaling. Knockdown of LOC105372576 and activation of its endogenous transcription, respectively, reduced and increased the motility of keratinocytes and reepithelialization of human ex vivo skin wounds. Therefore, LOC105372576 was termed "wound and keratinocyte migration-associated lncRNA 1" (WAKMAR1). Further study revealed that WAKMAR1 regulated a network of protein-coding genes important for cell migration, most of which were under the control of transcription factor E2F1. Mechanistically, WAKMAR1 enhanced E2F1 expression by interfering with E2F1 promoter methylation through the sequestration of DNA methyltransferases. Collectively, we have identified a lncRNA important for keratinocyte migration, whose deficiency may be involved in the pathogenesis of chronic wounds.


Assuntos
Movimento Celular , Queratinócitos/metabolismo , RNA Longo não Codificante/biossíntese , Transdução de Sinais , Pele/metabolismo , Cicatrização , Ferimentos e Lesões/metabolismo , Doença Crônica , Fator de Transcrição E2F1/metabolismo , Regulação da Expressão Gênica , Humanos , Queratinócitos/patologia , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo , Ferimentos e Lesões/patologia
6.
Mult Scler ; 27(7): 1014-1026, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32729352

RESUMO

BACKGROUND: Despite compelling evidence that cigarette smoking impacts the risk of developing multiple sclerosis (MS), little is known about smoking-associated changes in the primary exposed lung cells of patients. OBJECTIVES: We aimed to examine molecular changes occurring in bronchoalveolar lavage (BAL) cells from MS patients in relation to smoking and in comparison to healthy controls (HCs). METHODS: We profiled DNA methylation in BAL cells from female MS (n = 17) and HC (n = 22) individuals, using Illumina Infinium EPIC and performed RNA-sequencing in non-smokers. RESULTS: The most prominent changes were found in relation to smoking, with 1376 CpG sites (adjusted P < 0.05) differing between MS smokers and non-smokers. Approximately 30% of the affected genes overlapped with smoking-associated changes in HC, leading to a strong common smoking signature in both MS and HC after gene ontology analysis. Smoking in MS patients resulted in additional discrete changes related to neuronal processes. Methylome and transcriptome analyses in non-smokers suggest that BAL cells from MS patients display very subtle (not reaching adjusted P < 0.05) but concordant changes in genes connected to reduced transcriptional/translational processes and enhanced cellular motility. CONCLUSIONS: Our study provides insights into the impact of smoking on lung inflammation and immunopathogenesis of MS.


Assuntos
Epigenoma , Esclerose Múltipla , Metilação de DNA , Feminino , Humanos , Esclerose Múltipla/genética , Fumar/efeitos adversos , Transcriptoma
7.
J Autoimmun ; 101: 17-25, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31014917

RESUMO

Multiple sclerosis (MS) is a leading cause of progressive disability among young adults caused by inflammation, demyelination and axonal loss in the central nervous system. Small non-coding RNAs (sncRNAs) are important regulators of various biological processes and could therefore play important roles in MS. Over the past decade, a large number of studies investigated sncRNAs in MS patients, focusing primarily on microRNAs (miRNAs). Overwhelming 500 miRNAs have been reported as dysregulated in MS. Nevertheless, owing to a large heterogeneity between studies it is challenging to evaluate the reproducibility of findings, in turn hampering our knowledge about the functional roles of miRNAs in disease. We systematically searched main databases and evaluated results from all studies that examined sncRNAs in MS to date (n = 61) and provided a detailed overview of experimental design and findings of these studies. We focused on the mechanisms of the most dysregulated sncRNAs and used predicted targets of the most dysregulated sncRNAs as input for functional enrichment analysis to highlight affected pathways. The prime affected pathway was TGF-ß signaling. This multifunctional cytokine is important in the differentiation and function of T helper type 17 (Th17) and regulatory T (Treg) cells, with opposing functions in the disease. Recent studies demonstrate the importance of miRNAs in controlling the balance between Th17/Th1 cells and Tregs and, importantly, the potential to exploit this paradigm for therapeutic purposes. Additionally, some of the discussed miRNAs could potentially serve as biomarkers of disease. In order to assist researchers in evaluating the evidence of a particular sncRNA in the pathogenesis of MS, we provide a detailed overview of experimental design and findings of these studies to date.


Assuntos
Biomarcadores , Predisposição Genética para Doença , Terapia Genética , Terapia de Alvo Molecular , Esclerose Múltipla/genética , Esclerose Múltipla/terapia , Pequeno RNA não Traduzido , Animais , MicroRNA Circulante , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular/métodos , Esclerose Múltipla/diagnóstico , Interferência de RNA
8.
Mult Scler ; 24(10): 1288-1300, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28766461

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors. OBJECTIVE: We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC). METHODS: We performed DNA methylation analysis in CD4+ T cells from RR-MS, SP-MS, and HC and associated identified changes with the nearby risk allele, smoking, age, and gene expression. RESULTS: We observed significant methylation differences in the VMP1/MIR21 locus, with RR-MS displaying higher methylation compared to SP-MS and HC. VMP1/MIR21 methylation did not correlate with a known MS risk variant in VMP1 or smoking but displayed a significant negative correlation with age and the levels of mature miR-21 in CD4+ T cells. Accordingly, RR-MS displayed lower levels of miR-21 compared to SP-MS, which might reflect differences in age between the groups, and healthy individuals and a significant enrichment of up-regulated miR-21 target genes. CONCLUSION: Disease-related changes in epigenetic marking of MIR21 in RR-MS lead to differences in miR-21 expression with a consequence on miR-21 target genes.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Regulação da Expressão Gênica/fisiologia , MicroRNAs/genética , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Recidivante-Remitente/genética , Adulto , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Regulação para Cima
9.
Psychiatry Clin Neurosci ; 72(4): 195-211, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29292553

RESUMO

Psychiatric disorders are clinically heterogeneous and debilitating chronic diseases resulting from a complex interplay between gene variants and environmental factors. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, instruct the cell/tissue to correctly interpret external signals and adjust its functions accordingly. Given that epigenetic modifications are sensitive to environment, stable, and reversible, epigenetic studies in psychiatry could represent a promising approach to better understanding and treating disease. In the present review, we aim to discuss the clinical opportunities and challenges arising from the epigenetic research in psychiatry. Using selected examples, we first recapitulate key findings supporting the role of adverse life events, alone or in combination with genetic risk, in epigenetic programming of neuropsychiatric systems. Epigenetic studies further report encouraging findings about the use of methylation changes as diagnostic markers of disease phenotype and predictive tools of progression and response to treatment. Then we discuss the potential of using targeted epigenetic pharmacotherapy, combined with psychosocial interventions, for future personalized medicine for patients. Finally, we review the methodological limitations that could hinder interpretation of epigenetic data in psychiatry. They mainly arise from heterogeneity at the individual and tissue level and require future strategies in order to reinforce the biological relevance of epigenetic data and its translational use in psychiatry. Overall, we suggest that epigenetics could provide new insights into a more comprehensive interpretation of mental illness and might eventually improve the nosology, treatment, and prevention of psychiatric disorders.


Assuntos
Epigênese Genética , Epigenômica/métodos , Transtornos Mentais , Psiquiatria/métodos , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , Transtornos Mentais/terapia
10.
BMC Bioinformatics ; 18(1): 486, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141580

RESUMO

BACKGROUND: The advent of array-based genome-wide DNA methylation methods has enabled quantitative measurement of single CpG methylation status at relatively low cost and sample input. Whereas the use of Infinium Human Methylation BeadChips has shown great utility in clinical studies, no equivalent tool is available for rodent animal samples. We examined the feasibility of using the new Infinium MethylationEPIC BeadChip for studying DNA methylation in mouse. RESULTS: In silico, we identified 19,420 EPIC probes (referred as mEPIC probes), which align with a unique best alignment score to the bisulfite converted reference mouse genome mm10. Further annotation revealed that 85% of mEPIC probes overlapped with mm10.refSeq genes at different genomic features including promoters (TSS1500 and TSS200), 1st exons, 5'UTRs, 3'UTRs, CpG islands, shores, shelves, open seas and FANTOM5 enhancers. Hybridization of mouse samples to Infinium Human MethylationEPIC BeadChips showed successful measurement of mEPIC probes and reproducibility between inter-array biological replicates. Finally, we demonstrated the utility of mEPIC probes for data exploration such as hierarchical clustering. CONCLUSIONS: Given the absence of cost and labor convenient genome-wide technologies in the murine system, our findings show that the Infinium MethylationEPIC BeadChip platform is suitable for investigation of the mouse methylome. Furthermore, we provide the "mEPICmanifest" with genomic features, available to users of Infinium Human MethylationEPIC arrays for mouse samples.


Assuntos
Metilação de DNA , Camundongos/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Ilhas de CpG , Genômica , Humanos , Reprodutibilidade dos Testes
11.
Physiol Genomics ; 49(9): 447-461, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754822

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. MS likely results from a complex interplay between predisposing causal gene variants (the strongest influence coming from HLA class II locus) and environmental risk factors such as smoking, infectious mononucleosis, and lack of sun exposure/vitamin D. However, little is known about the mechanisms underlying MS development and progression. Moreover, the clinical heterogeneity and variable response to treatment represent additional challenges to a comprehensive understanding and efficient treatment of disease. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, integrate influences from the genes and the environment to regulate gene expression accordingly. Studying epigenetic modifications, which are stable and reversible, may provide an alternative approach to better understand and manage disease. We here aim to review findings from epigenetic studies in MS and further discuss the challenges and clinical opportunities arising from epigenetic research, many of which apply to other diseases with similar complex etiology. A growing body of evidence supports a role of epigenetic processes in the mechanisms underlying immune pathogenesis and nervous system dysfunction in MS. However, disparities between studies shed light on the need to consider possible confounders and methodological limitations for a better interpretation of the data. Nevertheless, translational use of epigenetics might offer new opportunities in epigenetic-based diagnostics and therapeutic tools for a personalized care of MS patients.


Assuntos
Pesquisa Biomédica , Epigênese Genética , Esclerose Múltipla/genética , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Humanos
12.
J Immunol ; 190(8): 4066-75, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23514736

RESUMO

MicroRNAs (miRNAs) are known to regulate most biological processes and have been found dysregulated in a variety of diseases, including multiple sclerosis (MS). In this study, we characterized miRNAs that associate with susceptibility to develop experimental autoimmune encephalomyelitis (EAE) in rats, a well-established animal model of MS. Using Illumina next-generation sequencing, we detected 544 miRNAs in the lymph nodes of EAE-susceptible Dark Agouti and EAE-resistant Piebald Virol Glaxo rats during immune activation. Forty-three miRNAs were found differentially expressed between the two strains, with 81% (35 out of 43) showing higher expression in the susceptible strain. Only 33% of tested miRNAs displayed differential expression in naive lymph nodes, suggesting that a majority of regulated miRNAs are EAE dependent. Further investigation of a selected six miRNAs indicates differences in cellular source and kinetics of expression. Several of the miRNAs, including miR-146a, miR-21, miR-181a, miR-223, and let-7, have previously been implicated in immune system regulation. Moreover, 77% (33 out of 43) of the miRNAs were associated with MS and other autoimmune diseases. Target genes likely regulated by the miRNAs were identified using computational predictions combined with whole-genome expression data. Differentially expressed miRNAs and their targets involve functions important for MS and EAE, such as immune cell migration through targeting genes like Cxcr3 and cellular maintenance and signaling by regulation of Prkcd and Stat1. In addition, we demonstrated that these three genes are direct targets of miR-181a. Our study highlights the impact of multiple miRNAs, displaying diverse kinetics and cellular sources, on development of pathogenic autoimmune inflammation.


Assuntos
Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , MicroRNAs/genética , Análise de Sequência de RNA , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , MicroRNAs/biossíntese , Ratos , Ratos Endogâmicos , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/tendências , Especificidade da Espécie
13.
Brain Behav Immun Health ; 38: 100787, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38737964

RESUMO

Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system with progressive lifelong disability. Current treatments are particularly effective at the early inflammatory stage of the disease but associate with safety concerns such as increased risk of infection. While clinical and epidemiological evidence strongly support the role of a bidirectional communication between the lung and the brain in MS in influencing disease risk and severity, the exact processes underlying such relationship appear complex and not fully understood. This short review aims to summarize key findings and future perspectives that might provide new insights into the mechanisms underpinning the lung-brain axis in MS.

14.
Mult Scler Relat Disord ; 79: 104991, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708820

RESUMO

BACKGROUND: A compelling body of evidence implicates cigarette smoking and lung inflammation in Multiple Sclerosis (MS) susceptibility and progression. Previous studies have reported epigenetic age (DNAm age) acceleration in blood immune cells and in glial cells of people with MS (pwMS) compared to healthy controls (HC). OBJECTIVES: We aimed to examine biological ageing in lung immune cells in the context of MS and smoking. METHODS: We analyzed age acceleration residuals in lung bronchoalveolar lavage (BAL) cells, constituted of mainly alveolar macrophages, from 17 pwMS and 22 HC in relation to smoking using eight DNA methylation-based clocks, namely AltumAge, Horvath, GrimAge, PhenoAge, Zhang, SkinBlood, Hannum, Monocyte clock as well as two RNA-based clocks, which capture different aspects of biological ageing. RESULTS: After adjustment for covariates, five epigenetic clocks showed significant differences between the groups. Four of them, Horvath (Padj = 0.028), GrimAge (Padj = 4.28 × 10-7), SkinBlood (Padj = 0.001) and Zhang (Padj = 0.02), uncovered the sole effect of smoking on ageing estimates, irrespective of the clinical group. The Horvath, SkinBlood and Zhang clocks showed a negative impact of smoking while GrimAge detected smoking-associated age acceleration in BAL cells. On the contrary, the AltumAge clock revealed differences between pwMS and HC and indicated that, in the absence of smoking, BAL cells of pwMS were epigenetically 5.4 years older compared to HC (Padj = 0.028). Smoking further affected epigenetic ageing in BAL cells of pwMS specifically as non-smoking pwMS exhibited a 10.2-year AltumAge acceleration compared to pwMS smokers (Padj = 0.0049). Of note, blood-derived monocytes did not show any MS-specific or smoking-related AltumAge differences. The difference between BAL cells of pwMS smokers and non-smokers was attributable to the differential methylation of 114 AltumAge-CpGs (Padj < 0.05) affecting genes involved in innate immune processes such as cytokine production, defense response and cell motility. These changes functionally translated into transcriptional differences in BAL cells between pwMS smokers and non-smokers. CONCLUSIONS: BAL cells of pwMS display inflammation-related and smoking-dependent changes associated to epigenetic ageing captured by the AltumAge clock. Future studies examining potential confounders, such as the distribution of distinct BAL myeloid cell types in pwMS compared to control individuals in relation to smoking may clarify the varying performance and DNAm age estimations among epigenetic clocks.


Assuntos
Epigênese Genética , Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Fumar , Envelhecimento/genética , Lavagem Broncoalveolar , Pulmão
15.
J Psychiatr Res ; 160: 217-224, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36857986

RESUMO

BACKGROUND: The ability to accurately estimate risk of suicide deaths on an individual level remains elusive. METHODS: This study reports on a case-control study set-up from a well-characterized cohort of 88 predominantly female suicide attempters (SA), stratified into low- (n = 57) and high-risk groups (n = 31) based on reports of later death by suicide, as well as degree of intent-to-die and lethality of SA method. We perform an unbiased analysis of 12,930 whole-blood derived CpG-sites (Illumina Infinium EPIC BeadChip) previously demonstrated to be more conciliable with brain-derived variations. The candidate site was validated by pyrosequencing. External replication was performed in (1) relation to age at index suicide attempt in 97 women with emotionally unstable personality disorder (whole-blood) and (2) death by suicide in a mixed group of 183 prefrontal-cortex (PFC) derived samples who died by suicide or from non-psychiatric etiologies. RESULTS: CYP2D6-coupled CpG-site cg07016288 was hypomethylated in severe suicidal behavior (p < 10E-06). Results were validated by pyrosequencing (p < 0.01). Replication analyses demonstrate hypomethylation of cg07016288 in relation to age at index SA in females (p < 0.05) and hypermethylation in PFC of male suicide completers (p < 0.05). LIMITATIONS: Genotyping of CYP2D6 was not performed and CpG-site associations to gene expression were not explored. CONCLUSIONS: CYP2D6-coupled epigenetic markers are hypomethylated in females in dependency of features known to confer increased risk of suicide deaths and hypermethylated in PFC of male suicide completers. Further elucidating the role of CYP2D6 in severe suicidality or suicide deaths hold promise to deduce clinically meaningful results.


Assuntos
Citocromo P-450 CYP2D6 , Epigênese Genética , Tentativa de Suicídio , Feminino , Humanos , Masculino , Estudos de Casos e Controles , Estudos Transversais , Ideação Suicida , Tentativa de Suicídio/psicologia , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo
16.
Front Immunol ; 14: 1251772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691926

RESUMO

The Human Leukocyte Antigen (HLA) locus associates with a variety of complex diseases, particularly autoimmune and inflammatory conditions. The HLA-DR15 haplotype, for example, confers the major risk for developing Multiple Sclerosis in Caucasians, pinpointing an important role in the etiology of this chronic inflammatory disease of the central nervous system. In addition to the protein-coding variants that shape the functional HLA-antigen-T cell interaction, recent studies suggest that the levels of HLA molecule expression, that are epigenetically controlled, also play a role in disease development. However, deciphering the exact molecular mechanisms of the HLA association has been hampered by the tremendous genetic complexity of the locus and a lack of robust approaches to investigate it. Here, we developed a method to specifically enrich the genomic DNA from the HLA class II locus (chr6:32,426,802-34,167,129) and proximal promoters of 2,157 immune-relevant genes, utilizing the Agilent RNA-based SureSelect Methyl-Seq Capture related method, followed by sequencing to detect genetic and epigenetic variation. We demonstrated successful simultaneous detection of the genetic variation and quantification of DNA methylation levels in HLA locus. Moreover, by the detection of differentially methylated positions in promoters of immune-related genes, we identified relevant pathways following stimulation of cells. Taken together, we present a method that can be utilized to study the interplay between genetic variance and epigenetic regulation in the HLA class II region, potentially, in a wide disease context.


Assuntos
DNA , Epigênese Genética , Humanos , Antígenos de Histocompatibilidade Classe II/genética , Metilação de DNA , Processamento de Proteína Pós-Traducional , Proteínas Mutantes
17.
Neurology ; 101(7): e679-e689, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541839

RESUMO

BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), accelerated aging of the immune system (immunosenescence) may be associated with disease onset or drive progression. DNA methylation (DNAm) is an epigenetic factor that varies among lymphocyte subtypes, and cell-specific DNAm is associated with MS. DNAm varies across the life span and can be used to accurately estimate biological age acceleration, which has been linked to a range of morbidities. The objective of this study was to test for cell-specific epigenetic age acceleration (EAA) in people with MS. METHODS: This was a case-control study of EAA using existing DNAm data from several independent previously published studies. Data were included if .idat files from Illumina 450K or EPIC arrays were available for both a case with MS and an age-matched and sex-matched control, from the same study. Multifactor statistical modeling was performed to assess the primary outcome of EAA. We explored the relationship of EAA and MS, including interaction terms to identify immune cell-specific effects. Cell-sorted DNA methylation data from 3 independent datasets were used to validate findings. RESULTS: We used whole blood DNA methylation data from 583 cases with MS and 643 non-MS controls to calculate EAA using the GrimAge algorithm. The MS group exhibited an increased EAA compared with controls (approximately 9 mths, 95% CI 3.6-14.4), p = 0.001). Statistical deconvolution showed that EAA is associated with MS in a B cell-dependent manner (ß int = 1.7, 95% CI 0.3-2.8), p = 0.002), irrespective of B-cell proportions. Validation analysis using 3 independent datasets enriched for B cells showed an EAA increase of 5.1 years in cases with MS compared with that in controls (95% CI 2.8-7.4, p = 5.5 × 10-5). By comparison, there was no EAA difference in MS in a T cell-enriched dataset. We found that EAA was attributed to the DNAm surrogates for Beta-2-microglobulin (difference = 47,546, 95% CI 10,067-85,026; p = 7.2 × 10-5), and smoking pack-years (difference = 8.1, 95% CI 1.9-14.2, p = 0.002). DISCUSSION: This study provides compelling evidence that B cells exhibit marked EAA in MS and supports the hypothesis that premature B-cell immune senescence plays a role in MS. Future MS studies should focus on age-related molecular mechanisms in B cells.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Estudos de Casos e Controles , Envelhecimento/genética , Epigênese Genética , Metilação de DNA
18.
Front Neuroendocrinol ; 32(1): 10-24, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20624414

RESUMO

Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells. Their role in the immune system is well-known, and it has recently been suggested that they may also play a role in the central nervous system (CNS). Indeed, they do not only act as immunoinflammatory mediators in the brain but they also act as potential modulators in neurotransmission. Although we are only beginning to be aware of the implication of chemokines in neuroendocrine functions, this review aims at summarizing what is known in that booming field of research. First we describe the expression of chemokines and their receptors in the CNS with a focus on the hypothalamo-pituitary system. Secondly, we present what is known on some chemokines in the regulation of neuroendocrine functions such as cell migration, stress, thermoregulation, drinking and feeding as well as anterior pituitary functions. We suggest that chemokines provide a fine modulatory tuning system of neuroendocrine regulations.


Assuntos
Quimiocinas/fisiologia , Sistemas Neurossecretores/fisiologia , Receptores de Quimiocinas/fisiologia , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Humanos , Modelos Biológicos , Sistemas Neurossecretores/metabolismo , Adeno-Hipófise/metabolismo , Adeno-Hipófise/fisiologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
19.
J Neuroinflammation ; 9: 36, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22353423

RESUMO

BACKGROUND: Sustained neuroinflammation strongly contributes to the pathogenesis of pain. The clinical challenge of chronic pain relief led to the identification of molecules such as cytokines, chemokines and more recently matrix metalloproteinases (MMPs) as putative therapeutic targets. Evidence points to a founder member of the matricial CCN family, NOV/CCN3, as a modulator of these inflammatory mediators. We thus investigated the possible involvement of NOV in a preclinical model of persistent inflammatory pain. METHODS: We used the complete Freund's adjuvant (CFA)-induced model of persistent inflammatory pain and cultured primary sensory neurons for in vitro experiments. The mRNA expression of NOV and pro-inflammatory factors were measured with real-time quantitative PCR, CCL2 protein expression was assessed using ELISA, MMP-2 and -9 activities using zymography. The effect of drugs on tactile allodynia was evaluated by the von Frey test. RESULTS: NOV was expressed in neurons of both dorsal root ganglia (DRG) and dorsal horn of the spinal cord (DHSC). After intraplantar CFA injection, NOV levels were transiently and persistently down-regulated in the DRG and DHSC, respectively, occurring at the maintenance phase of pain (15 days). NOV-reduced expression was restored after treatment of CFA rats with dexamethasone. In vitro, results based on cultured DRG neurons showed that siRNA-mediated inhibition of NOV enhanced IL-1ß- and TNF-α-induced MMP-2, MMP-9 and CCL2 expression whereas NOV addition inhibited TNF-α-induced MMP-9 expression through ß1 integrin engagement. In vivo, the intrathecal delivery of MMP-9 inhibitor attenuated mechanical allodynia of CFA rats. Importantly, intrathecal administration of NOV siRNA specifically led to an up-regulation of MMP-9 in the DRG and MMP-2 in the DHSC concomitant with increased mechanical allodynia. Finally, NOV intrathecal treatment specifically abolished the induction of MMP-9 in the DRG and, MMP-9 and MMP-2 in the DHSC of CFA rats. This inhibitory effect on MMP is associated with reduced mechanical allodynia. CONCLUSIONS: This study identifies NOV as a new actor against inflammatory pain through regulation of MMPs thus uncovering NOV as an attractive candidate for therapeutic improvement in pain relief.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Inflamação/complicações , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Dor/etiologia , Dor/metabolismo , Análise de Variância , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Quimiocina CCL2/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Adjuvante de Freund , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Proteínas Imediatamente Precoces/genética , Inflamação/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dor/tratamento farmacológico , Medição da Dor , Limiar da Dor/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Medula Espinal/patologia , Fatores de Tempo , Transfecção , Regulação para Cima/efeitos dos fármacos
20.
Epigenetics ; 17(11): 1311-1330, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35094644

RESUMO

Multiple Sclerosis (MS), the leading cause of non-traumatic neurological disability in young adults, is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Due to the poor accessibility to the target organ, CNS-confined processes underpinning the later progressive form of MS remain elusive thereby limiting treatment options. We aimed to examine DNA methylation, a stable epigenetic mark of genome activity, in glial cells to capture relevant molecular changes underlying MS neuropathology. We profiled DNA methylation in nuclei of non-neuronal cells, isolated from 38 post-mortem normal-appearing white matter (NAWM) specimens of MS patients (n = 8) in comparison to white matter of control individuals (n = 14), using Infinium MethylationEPIC BeadChip. We identified 1,226 significant (genome-wide adjusted P-value < 0.05) differentially methylated positions (DMPs) between MS patients and controls. Functional annotation of the altered DMP-genes uncovered alterations of processes related to cellular motility, cytoskeleton dynamics, metabolic processes, synaptic support, neuroinflammation and signaling, such as Wnt and TGF-ß pathways. A fraction of the affected genes displayed transcriptional differences in the brain of MS patients, as reported by publically available transcriptomic data. Cell type-restricted annotation of DMP-genes attributed alterations of cytoskeleton rearrangement and extracellular matrix remodelling to all glial cell types, while some processes, including ion transport, Wnt/TGF-ß signaling and immune processes were more specifically linked to oligodendrocytes, astrocytes and microglial cells, respectively. Our findings strongly suggest that NAWM glial cells are highly altered, even in the absence of lesional insult, collectively exhibiting a multicellular reaction in response to diffuse inflammation.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Substância Branca , Humanos , Substância Branca/metabolismo , Substância Branca/patologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Metilação de DNA , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Encéfalo/metabolismo , Microglia , Inflamação/genética , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA