Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175325

RESUMO

The development of new functional materials based on metal-organic frameworks (MOFs) for adsorption and catalytic applications is one of the promising trends of modern materials science. The Zr-based MOFs, specifically UiO-66, are considered as the supports for metallic catalysts for the 5-hydroxymethylfurfural platform molecule reduction into valuable products. The present work focused on the effect of NH2 modification of UiO-66 on its structure and functional properties. The samples were prepared by a solvothermal method. The structure of the obtained materials was studied by X-ray diffraction, IR spectroscopy, UV-visible spectroscopy, and low-temperature nitrogen adsorption. Basic properties were investigated by HCl and CH3COOH adsorption, and electrokinetic properties were studied by electrophoretic light scattering. UiO-66-NH2 samples with different contents of aminoterephthalate linkers were successfully prepared. A gradual decrease in the specific surface area and the fraction of micropores with a diameter of ~0.9 nm was observed with an increase in the aminoterephthalate content. A proportional increase in the total number of basic sites in UiO-66-NH2 samples was established with an increase in the aminoterephthalate content up to 75%. At the same time, a noticeable decrease in the total number of basic sites and an increase in their strength with higher aminoterephthalate content was observed.

2.
Nano Lett ; 21(23): 10019-10025, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34802241

RESUMO

Halide perovskite nanowire-based lasers have become a powerful tool for modern nanophotonics, being deeply subwavelength in cross-section and demonstrating low-threshold lasing within the whole visible spectral range owing to the huge gain of material even at room temperature. However, their emission directivity remains poorly controlled because of the efficient outcoupling of radiation through their subwavelength facets working as pointlike light sources. Here, we achieve directional lasing from a single perovskite CsPbBr3 nanowire by imprinting a nanograting on its surface, which provides stimulated emission outcoupling to its vertical direction with a divergence angle around 2°. The nanopatterning is carried out by the high-throughput laser ablation method, which preserves the luminescent properties of the material that is typically deteriorated after processing via conventional lithographic approaches. Moreover, nanopatterning of the perovskite nanowire is found to decrease the number of the lasing modes with a 2-fold increase of the quality factor of the remaining modes.

3.
Small ; 16(19): e2000410, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32309903

RESUMO

Nanophotonics based on resonant nanostructures and metasurfaces made of halide perovskites have become a prospective direction for efficient light manipulation at the subwavelength scale in advanced photonic designs. One of the main challenges in this field is the lack of large-scale low-cost technique for subwavelength perovskite structures fabrication preserving highly efficient luminescence. Here, unique properties of halide perovskites addressed to their extremely low thermal conductivity (lower than that of silica glass) and high defect tolerance to apply projection femtosecond laser lithography for nanofabrication with precise spatial control in all three dimensions preserving the material luminescence efficiency are employed. Namely, with CH3 NH3 PbI3 perovskite highly ordered nanoholes and nanostripes of width as small as 250 nm, metasurfaces with periods less than 400 nm, and nanowire lasers as thin as 500 nm, corresponding to the state-of-the-art in multistage expensive lithographical methods are created. Remarkable performance of the developed approach allows to demonstrate a number of advanced optical applications, including morphology-controlled photoluminescence yield, structural coloring, optical- information encryption, and lasing.

4.
Environ Res ; 186: 109513, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32305679

RESUMO

This study reports the differences in toxic action between cadmium sulfide (CdS) and zinc sulfide (ZnS) nanoparticles (NPs) prepared by recently developed xanthate-mediated method. The aquatic toxicity of the synthesized NPs on four marine microalgae species was explored. Growth rate, esterase activity, membrane potential, and morphological changes of microalgae cells were evaluated using flow cytometry and optical microscopy. CdS and ZnS NPs demonstrated similar level of general toxicity and growth-rate inhibition to all used microalgae species, except the red algae P. purpureum. More specifically, CdS NPs caused higher inhibition of growth rate for C. muelleri and P. purpureum, while ZnS NPs were more toxic for A. ussuriensis and H. akashiwo species. Our findings suggest that the sensitivity of different microalgae species to CdS and ZnS NPs depends on the chemical composition of NPs and their ability to interact with the components of microalgal cell-wall. The red microalga was highly resistant to ZnS NPs most likely due to the presence of phycoerythrin proteins in the outer membrane bound Zn2+ cations defending their cells from further toxic influence. The treatment with CdS NPs caused morphological changes and biochemical disorder in all tested microalgae species. The toxicity of CdS NPs is based on their higher photoactivity under visible light irradiation and lower dissociation in water, which allows them to generate more reactive oxygen species and create a higher risk of oxidative stress to aquatic organisms. The results of this study contribute to our understanding of the parameters affecting the aquatic toxicity of semiconductor NPs and provide a basis for further investigations.


Assuntos
Microalgas , Nanopartículas , Compostos de Cádmio , Nanopartículas/toxicidade , Sulfetos/toxicidade , Compostos de Zinco
5.
Langmuir ; 34(45): 13544-13549, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30339409

RESUMO

Laser ablation in liquid was used to prepare homogeneous copper-zinc alloy catalysts that exhibited excellent selectivity for C2H4 in CO2 electroreduction, with faradaic efficiency values as high as 33.3% at a potential of -1.1 V (vs reversible hydrogen electrode). The high proximity of Cu and Zn atoms on the surface of the catalyst was found to facilitate both stabilization of the CO* intermediate and its transfer from Zn atoms to their Cu neighbors, where further dimerization and protonation occur to give rise to a large amount of ethylene product. The new homogeneous nanocatalyst, along with the mechanism proposed for its performance, may be very helpful for in-depth understanding of processes related to carbon dioxide electroreduction and conversion.

6.
Langmuir ; 33(26): 6457-6463, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28614946

RESUMO

Owing to their high extinction coefficient and moderate band gap, cadmium chalcogenides are known as common semiconductors for photoelectric conversion. Nevertheless, no ideal cadmium chalcogenide with proper band structure is available yet for photoelectrochemical hydrogen evolution. In this work, we modified the band structure of CdTe via alloying with Se to achieve a ternary compound (CdSe0.8Te0.2) with n-type conduction, a narrower band gap, and a more negative band position compared to those of CdSe and CdTe. This novel material exhibits strong light absorption over a wider spectrum range and generates more vigorous electrons for hydrogen reduction. As a result, a photoelectrode based on nanoflake arrays of the new material could achieve a photocurrent density 2 times that of its CdSe counterpart, outperforming similar materials previously reported in the literature. Moreover, the quick transfer of holes achieved in the novel material was found to depress photocorrosion processes, which led to improved long-term working stability.

7.
Phys Chem Chem Phys ; 18(34): 23628-37, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27507010

RESUMO

ZnO nanomaterials with controlled size, shape and surface chemistry are required for applications in diverse areas, such as optoelectronics, photocatalysis, biomedicine and so on. Here, we report on ZnO nanostructures with rod-like and spherical shapes prepared via laser ablation in liquid using a laser with millisecond-long pulses. By changing laser parameters (such as pulse width and peak power), the size or aspect ratio of such nanostructures could be tuned. The surface chemistry and defects of the products were also strongly affected by applied laser conditions. The preparation of different structures is explained by the intense heating of liquid media caused by millisecond-long pulses and secondary irradiation of already-formed nanostructures.

8.
Langmuir ; 31(29): 8162-7, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26154589

RESUMO

Hierarchical nanowires (HNWs) exhibit unique properties and have wide applications, while often suffering from imperfect structure. Herein, we report a facile strategy toward ultrathin CdS HNWs with monocrystal structure, where a continuous-wave (CW) Nd:YAG laser is employed to irradiate an oleic acid (OA) solution containing precursors and a light absorber. The high heating rate and large temperature gradient generated by the CW laser lead to the rapid formation of tiny zinc-blende CdS nanocrystals which then line up into nanowires with the help of OA molecules. Next, the nanowires experience a phase transformation from zinc-blende to wurtzite structure, and the transformation-induced stress creates terraces on their surface, which promotes the growth of side branches and eventually results in monocrystal HNWs with an ultrathin diameter of 24 nm. The one-step synthesis of HNWs is conducted in air and completes in just 40 s, thus being very simple and rapid. The prepared CdS HNWs display photocatalytic performance superior to their nanoparticle counterparts, thus showing promise for catalytic applications in the future.

9.
Angew Chem Int Ed Engl ; 54(2): 462-6, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25403980

RESUMO

For all-solution-processed (ASP) devices, transparent conducting oxide (TCO) nanocrystal (NC) inks are anticipated as the next-generation electrodes to replace both those synthesized by sputtering techniques and those consisting of rare metals, but a universal and one-pot method to prepare these inks is still lacking. A universal one-pot strategy is now described; through simply heating a mixture of metal-organic precursors a wide range of TCO NC inks, which can be assembled into high-performance electrodes for use in ASP optoelectronics, were synthesized. This method can be used for various oxide NC inks with yields as high as 10 g. The formed NCs are of high crystallinity, uniform morphology, monodispersity, and high ink stability and feature effective doping. Therefore, the inks can be readily assembled into films with a surface roughness of 1.6 nm. Typically, a sheet resistance of 110â€…Ω sq(-1) can be achieved with a transmittance of 88%, which is the best performance for TCO NC ink-based electrodes described to date. These electrodes can thus drive a polymer light-emitting diode (PLED) with a luminance of 2200 cd m(-2) at 100 mA cm(-2).

10.
Materials (Basel) ; 17(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276466

RESUMO

Hydrosphere pollution by organic pollutants of different nature (persistent dyes, phenols, herbicides, antibiotics, etc.) is one of the urgent ecological problems facing humankind these days. The task of water purification from such pollutants can be effectively solved with the help of modern photocatalytic technologies. This article is devoted to the study of photocatalytic properties of composite catalysts based on ZnO modified with plasmonic Ag nanoparticles. All materials were obtained by laser synthesis in liquid and differed by their silver content and preparation conditions, such as additional laser irradiation and/or annealing of produced powders. The prepared ZnO-Ag powders were investigated by electron microscopy, X-ray diffraction and UV-Vis spectroscopy. Photocatalytic tests were carried out with well- known test molecules in water (persistent dye rhodamine B, phenol and common antibiotic tetracycline) using LED light sources with wavelengths of 375 and 410 nm. The introduction of small concentrations (up to 1%) of plasmonic Ag nanoparticles is shown to increase the efficiency of the ZnO photocatalyst by expanding its spectral range. Both the preparation conditions and material composition were optimized to obtain composite photocatalysts with the highest efficiency. Finally, the operation mechanisms of the material with different distribution of silver are discussed.

11.
Materials (Basel) ; 16(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36902893

RESUMO

Single-crystal planes are ideal platforms for catalytic research. In this work, rolled copper foils with predominantly (220) planes were used as the starting material. By using temperature gradient annealing, which caused grain recrystallization in the foils, they were transformed to those with (200) planes. In acidic solution, the overpotential of such a foil (10 mA cm-2) was found to be 136 mV lower than that of a similar rolled copper foil. The calculation results show that hollow sites formed on the (200) plane have the highest hydrogen adsorption energy and are active centers for hydrogen evolution. Thus, this work clarifies the catalytic activity of specific sites on the copper surface and demonstrates the critical role of surface engineering in designing catalytic properties.

12.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839038

RESUMO

The preparation method can considerably affect the structural, morphological, and gas-sensing properties of mixed-oxide materials which often demonstrate superior photocatalytic and sensing performance in comparison with single-metal oxides. In this work, hybrids of semiconductor nanomaterials based on TiO2 and ZnO were prepared by laser ablation of Zn and Ti plates in water and then tested as chemiresistive gas sensors towards volatile organics (2-propanol, acetaldehyde, ethanol, methanol) and ammonia. An infrared millisecond pulsed laser with energy 2.0 J/pulse and a repetition rate of 5 Hz was applied to Zn and Ti metal targets in different ablation sequences to produce two nano-hybrids (TiO2/ZnO and ZnO/TiO2). The surface chemistry, morphology, crystallinity, and phase composition of the prepared hybrids were found to tune their gas-sensing properties. Among all tested gases, sample TiO2/ZnO showed selectivity to ethanol, while sample ZnO/TiO2 sensed 2-propanol at room temperature, both with a detection limit of ~50 ppm. The response and recovery times were found to be 24 and 607 s for the TiO2/ZnO sensor, and 54 and 50 s for its ZnO/TiO2 counterpart, respectively, towards 100 ppm of the target gas at room temperature.

13.
ACS Appl Mater Interfaces ; 15(2): 3336-3347, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36602431

RESUMO

Recent progress in hybrid optical nanomaterials composed of dissimilar constituents permitted an improvement in the performance and functionality of novel devices developed for optoelectronics, catalysis, medical diagnostics, and sensing. However, the rational combination of contrasting materials such as noble metals and semiconductors within individual hybrid nanostructures via a ready-to-use and lithography-free fabrication approach is still a challenge. Here, we report on a two-step synthesis of hybrid Au-Si microspheres generated by laser ablation of silicon in isopropanol followed by laser irradiation of the produced Si nanoparticles in the presence of HAuCl4. Thermal reduction of [AuCl4]- species to a metallic gold phase, along with its subsequent mixing with silicon under laser irradiation, creates a nanostructured material with a unique composition and morphology, as revealed by electron microscopy, tomography, and elemental analysis. A combination of basic plasmonic and nanophotonic materials such as gold and silicon within a single microsphere allows for efficient light-to-heat conversion, as well as single-particle SERS sensing with temperature-feedback modality and expanded functionality. Moreover, the characteristic Raman signal and hot-electron-induced nonlinear photoluminescence coexisting within the novel Au-Si hybrids, as well as the commonly criticized randomness of the nanomaterials prepared by laser ablation in liquid, were proved to be useful for the realization of anticounterfeiting labels based on a physically unclonable function approach.

14.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836282

RESUMO

Dry reforming of methane with ratio CH4/CO2 = 1 is studied using supported Ni catalysts on SBA-15 modified by CeMnOx mixed oxides with different Ce/Mn ratios (0.25, 1 and 9). The obtained samples are characterized by wide-angle XRD, SAXS, N2 sorption, TPR-H2, TEM, UV-vis and Raman spectroscopies. The SBA-15 modification with CeMnOx decreases the sizes of NiO nanoparticles and enhances the NiO-support interaction. When Ce/Mn = 9, the NiO forms small particles on the surface of large CeO2 particles and/or interacts with CeO2, forming mixed phases. The best catalytic performance (at 650 °C, CH4 and CO2 conversions are 51 and 69%, respectively) is achieved over the Ni/CeMnOx/SBA-15 (9:1) catalyst. The peculiar CeMnOx composition (Ce/Mn = 9) also improves the catalyst stability: In a 24 h stability test, the CH4 conversion decreases by 18 rel.% as compared to a 30 rel.% decrease for unmodified catalyst. The enhanced catalytic stability of Ni/CeMnOx/SBA-15 (9:1) is attributed to the high concentration of reactive peroxo (O-) and superoxo (O2-) species that significantly lower the amount of coke in comparison with Ni-SBA-15 unmodified catalyst (weight loss of 2.7% vs. 42.2%). Ni-SBA-15 modified with equimolar Ce/Mn ratio or Mn excess is less performing. Ni/CeMnOx/SBA-15 (1:4) with the highest content of manganese shows the minimum conversions of reagents in the entire temperature range (X(CO2) = 4-36%, X(CH4) = 8-58%). This finding is possibly attributed to the presence of manganese oxide, which decorates the Ni particles due to its redistribution at the preparation stage.

15.
Materials (Basel) ; 16(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36984311

RESUMO

Using the methods of scanning and transmission electron microscopy, the features of the structural-phase state of a vanadium alloy of the V-Cr-Ta-Zr system after a combined treatment, which consisted in cyclic alternation of thermomechanical and chemical-heat treatments, were studied. The values of yield strength and ductility of the V-Cr-Ta-Zr alloy were determined, depending on the stabilization and test temperatures. It was established that, after the combined treatment, the structural-phase state of the V-Cr-Ta-Zr alloy was composite, in which the joint implementation of dispersion and substructural strengthening ensured the formation of a gradient grain structure with a polygonal state, the elements of which were fixed by nanosized ZrO2 particles characterized by a high thermal stability. Such modification of the microstructure was accompanied by an increase in the high-temperature strength and a shift in the upper limit of the temperature stability interval towards high temperatures, of up to 900 °C. It was assumed that the polygonal state inside the grains contributed to the implementation of cooperative mechanisms of the dislocation-disclination type, which ensured the accommodation of the material in the "high-strength state" under loading.

16.
Materials (Basel) ; 16(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138843

RESUMO

The present work is focused on nickel catalysts supported on La2O3-CeO2 binary oxides without and with the addition of Cu to the active component for the dry reforming of methane (DRM). The catalysts are characterized using XRD, XRF, TPD-CO2, TPR-H2, and low-temperature N2 adsorption-desorption methods. This work shows the effect of different La:Ce ratios (1:1 and 9:1) and the Cu addition on the structural, acid base, and catalytic properties of Ni-containing systems. The binary LaCeOx oxide at a ratio of La:Ce = 1:1 is characterized by the formation of a solid solution with a fluorite structure, which is preserved upon the introduction of mono- or bimetallic particles. At La:Ce = 9:1, La2O3 segregation from the solid solution structure is observed, and the La excess determines the nature of the precursor of the active component, i.e., lanthanum nickelate. The catalysts based on LaCeOx (1:1) are prone to carbonization during 6 h spent on-stream with the formation of carbon nanotubes. The Cu addition facilitates the reduction of the Cu-Ni catalyst carbonization and increases the number of structural defects in the carbon deposition products. The lanthanum-enriched LaCeOx (9:1) support prevents the accumulation of carbon deposition products on the surface of CuNi/La2O3-CeO2 9:1, providing high DRM activity and an H2/CO ratio of 0.9.

17.
J Funct Biomater ; 14(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36976079

RESUMO

Alloys based on TiNi are widely used in various fields of technology and medicine. In the present work, we report on the preparation of TiNi-alloy-based wire with the shape-memory effect, which was used for compression clips for surgery. The composition and structure of the wire and its martensitic and physical-chemical properties were studied using SEM, TEM, optic microscopy, profilometry, mechanical tests, etc. The TiNi alloy was found to consist of B2 and B19' and secondary-phase particles of Ti2Ni, TiNi3 and Ti3Ni4. Its matrix was slightly enriched in Ni (50.3 at.% of Ni). A homogeneous grain structure was revealed (an average grain size of 19 ± 0.3 µm) with equal quantities of grain boundaries of special and general types. The surface oxide layer provides improved biocompatibility and promotes the adhesion of protein molecules. Overall, the obtained TiNi wire was concluded to exhibit martensitic, physical and mechanical properties suitable for its use as an implant material. The wire was then used for manufacturing compression clips with the shape-memory effect and applied in surgery. The medical experiment that involved 46 children demonstrated that the use of such clips in children with double-barreled enterostomies permitted improvement in the results of surgical treatment.

18.
Chem Commun (Camb) ; 59(43): 6533-6535, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37159050

RESUMO

A zinc-infiltration process was adopted to prepare silver-doped copper nanosheet arrays. The larger atomic radius of Ag introduces tensile stress, which lowers the electron density at the s-orbitals of Cu atoms and improves the adsorption capability for hydrogen atoms. As a catalyst for hydrogen evolution, these silver doped copper nanosheet arrays achieved a low overpotential of 103 mV at 10 mA cm-2 in 1 M KOH, which is 604 mV lower than that of pure copper foil.

19.
J Funct Biomater ; 14(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37233387

RESUMO

TiNi alloys are very widely used materials in implant fabrication. When applied in rib replacement, they are required to be manufactured as combined porous-monolithic structures, ideally with a thin, porous part well-adhered to its monolithic substrate. Additionally, good biocompatibility, high corrosion resistance and mechanical durability are also highly demanded. So far, all these parameters have not been achieved in one material, which is why an active search in the field is still underway. In the present study, we prepared new porous-monolithic TiNi materials by sintering a TiNi powder (0-100 µm) on monolithic TiNi plates, followed by surface modification with a high-current pulsed electron beam. The obtained materials were evaluated by a set of surface and phase analysis methods, after which their corrosion resistance and biocompatibility (hemolysis, cytotoxicity, and cell viability) were evaluated. Finally, cell growth tests were conducted. In comparison with flat TiNi monoliths, the newly developed materials were found to have better corrosion resistance, also demonstrating good biocompatibility and potential for cell growth on their surface. Thus, the newly developed porous-on-monolith TiNi materials with different surface porosity and morphology showed promise as potential new-generation implants for use in rib endoprostheses.

20.
Chemistry ; 18(14): 4234-41, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22374832

RESUMO

We present a systemic investigation of a galvanic replacement technique in which active-metal nanoparticles are used as sacrificial seeds. We found that different nanostructures can be controllably synthesized by varying the type of more noble-metal ions and liquid medium. Specifically, nano-heterostructures of noble metal (Ag, Au) or Cu nanocrystals on active-metal (Mg, Zn) cores were obtained by the reaction of active-metal nanoparticles with more noble-metal ions in ethanol; Ag nanocrystal arrays were produced by the reaction of active-metal nanoparticles with Ag(+) ions in water; spongy Au nanospheres were generated by the reaction of active-metal nanoparticles with AuCl(4)(-) ions in water; and SnO(2) nanoparticles were prepared when Sn(2+) were used as the oxidant ions. The key factors determining the product morphology are shown to be the reactivity of the liquid medium and the nature of the oxidant-reductant couple, whereas Mg and Zn nanoparticles played similar roles in achieving various nanostructures. When microsized Mg and Zn particles were used as seeds in similar reactions, the products were mainly noble-metal dendrites. The new approach proposed in this study expands the capability of the conventional nanoscale galvanic replacement method and provides new avenues to various structures, which are expected to have many potential applications in catalysis, optoelectronics, and biomedicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA