Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Chem Soc ; 145(27): 14697-14704, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377151

RESUMO

Understanding the dynamics of Förster resonance energy transfer (FRET) in fluorophore-functionalized nanomaterials is critical for developing and utilizing such materials in biomedical imaging and optical sensing applications. However, structural dynamics of noncovalently bound systems have a significant effect on the FRET properties affecting their applications in solutions. Here, we study the dynamics of the FRET in atomistic detail by disclosing the structural dynamics of the noncovalently bound azadioxotriangulenium dye (KU) and atomically precise gold nanocluster (Au25(p-MBA)18, p-MBA = para-mercaptobenzoic acid) with a combination of experimental and computational methods. Two distinct subpopulations involved in the energy transfer process between the KU dye and the Au25(p-MBA)18 nanoclusters were resolved by time-resolved fluorescence experiments. Molecular dynamics simulations revealed that KU is bound to the surface of Au25(p-MBA)18 by interacting with the p-MBA ligands as a monomer and as a π-π stacked dimer where the center-to-center distance of the monomers to Au25(p-MBA)18 is separated by ∼0.2 nm, thus explaining the experimental observations. The ratio of the observed energy transfer rates was in reasonably good agreement with the well-known 1/R6 distance dependence for FRET. This work discloses the structural dynamics of the noncovalently bound nanocluster-based system in water solution, providing new insight into the dynamics and energy transfer mechanism of the fluorophore-functionalized gold nanocluster at an atomistic level.

2.
Phys Chem Chem Phys ; 24(48): 29655-29666, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453100

RESUMO

Parent, unsubstituted porphycene and its two derivatives: 2,7,12,17-tetra-n-propylporphycene and 2,7,12,17-tetra-t-butylporphycene were substituted at the meso position with amino and nitro groups. These two families of porphycenes were characterized in detail with respect to their spectral, photophysical, and tautomeric properties. Two trans tautomers of similar energies coexist in the ground electronic state, but only one form dominates in the lowest excited singlet state. Absorption, magnetic circular dichroism (MCD), and emission anisotropy combined with quantum-chemical calculations led to the assignment of S1 and S2 transitions in both tautomers. Compared with the parent porphycene, the S1-S2 energy gap significantly increases; for one tautomeric form, the effect is twice as large as for the other. Both amino- and nitroporphycenes emit single fluorescence; previously reported dual emission of aminoporphycenes is attributed to a degradation product. Introduction of bulky t-butyl groups leads to a huge decrease in fluorescence intensity; this effect, arising from the interaction of the meso substituent with the adjacent t-butyl moiety, is particularly strong in the nitro derivative.


Assuntos
Análise Espectral
3.
Chemistry ; 26(7): 1576-1587, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31670851

RESUMO

Complex molecular knots and links are still difficult to synthesize and the properties arising from their topology are mostly unknown. Here, we report on a comparative photophysical study carried out on a family of closely related quinolinium-based knots and links to determine the impact exerted by topology on the molecular backbone. Our results indicate that topology has a negligible influence on the behavior of loosely braided molecules, which mostly behave like their unbraided equivalents. On the other hand, tightly braided molecules display distinct features. Their higher packing density results in a pronounced ability to resist deformation, a significant reduction in the solvent-accessible surface area and favors close-range π-π interactions between the quinolinium units and neighboring aromatics. Finally, the sharp alteration in behavior between loosely and tightly braided molecules sheds light on the factors contributing to braiding tightness.

4.
Chimia (Aarau) ; 74(7): 629-630, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32778217

RESUMO

In response to the global pandemic causing world-wide travel restrictions, the SCS Photochemistry Section decided to organize its annual symposium online. The conference could be attended free of charge without geographical restrictions. This opened up many boarders and resulted in a record high number of registered participants from 24 different countries. Most of the participants were from Switzerland followed by Germany and the United Kingdom. On the day of the event, over 90 participants gathered behind their screens to hear about the latest findings in photochemistry research in Switzerland and abroad. The organizing committee, consisting of the board of the Photochemistry Section, had selected a scientific program including 3 invited lectures, 4 short talks and 10 elevator talks that replaced the poster session. In addition, the general assembly of the Section was held online after the symposium.

5.
J Am Chem Soc ; 141(48): 19118-19129, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697078

RESUMO

The relation between the chemical structure and the mechanical behavior of molecular machines is of paramount importance for a rational design of superior nanomachines. Here, we report on a mechanistic study of a nanometer scale translational movement in two bistable rotaxanes. Both rotaxanes consist of a tetra-amide macrocycle interlocked onto a polyether axle. The macrocycle can shuttle between an initial succinamide station and a 3,6-dihydroxy- or 3,6-di-tert-butyl-1,8-naphthalimide end stations. Translocation of the macrocycle is controlled by a hydrogen-bonding equilibrium between the stations. The equilibrium can be perturbed photochemically by either intermolecular proton or electron transfer depending on the system. To the best of our knowledge, utilization of proton transfer from a conventional photoacid for the operation of a molecular machine is demonstrated for the first time. The shuttling dynamics are monitored by means of UV-vis and IR transient absorption spectroscopies. The polyether axle accelerates the shuttling by ∼70% compared to a structurally similar rotaxane with an all-alkane thread of the same length. The acceleration is attributed to a decrease in activation energy due to an early transition state where the macrocycle partially hydrogen bonds to the ether group of the axle. The dihydroxyrotaxane exhibits the fastest shuttling speed over a nanometer distance (τshuttling ≈ 30 ns) reported to date. The shuttling in this case is proposed to take place via a so-called harpooning mechanism where the transition state involves a folded conformation due to the hydrogen-bonding interactions with the hydroxyl groups of the end station.


Assuntos
Hidrogênio/química , Rotaxanos/química , Amidas/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Naftalimidas/química , Prótons , Succinatos/química
6.
Chem Rev ; 117(16): 10826-10939, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27957848

RESUMO

Ultrafast photochemical reactions in liquids occur on similar or shorter time scales compared to the equilibration of the optically populated excited state. This equilibration involves the relaxation of intramolecular and/or solvent modes. As a consequence, the reaction dynamics are no longer exponential, cannot be quantified by rate constants, and may depend on the excitation wavelength contrary to slower photochemical processes occurring from equilibrated excited states. Such ultrafast photoinduced reactions do no longer obey the Kasha-Vavilov rule. Nonequilibrium effects are also observed in diffusion-controlled intermolecular processes directly after photoexcitation, and their proper description gives access to the intrinsic reaction dynamics that are normally hidden by diffusion. Here we discuss these topics in relation to ultrafast organic photochemical reactions in homogeneous liquids. Discussed reactions include intra- and intermolecular electron- and proton-transfer processes, as well as photochromic reactions occurring with and without bond breaking or bond formation, namely ring-opening reactions and cis-trans isomerizations, respectively.

7.
Chimia (Aarau) ; 73(10): 840, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31645249

RESUMO

On June 14, 2019, nearly 50 photochemists from all over Switzerland and beyond gathered together at the Haute Ecole d'Ingénierie et d'Architecture in Fribourg (HEIA-FR) for the annual SCS Photochemistry Section meeting to discuss their latest findings in the field. The organizing committee consisting of the board of the SCS Photochemistry Section put together a program consisting of 3 invited talks, 9 oral communications and a poster session with 24 posters to revive this event which, they hope, will take place annually. In addition, the general assembly of the Section was held at the premise during the day.

9.
Phys Chem Chem Phys ; 19(13): 8815-8825, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28294266

RESUMO

Polar solvation dynamics of six 7-aminocoumarins and 4-aminophthalimide (4AP) are investigated using broadband FLuorescence UP-conversion Spectroscopy (FLUPS) combined with a global analysis based on time-dependent band-shape functions. The solvation dynamics of the coumarins in ethanol exhibit only minor differences but are, however, significantly different from that of 4AP. The band-shape parameters, width and asymmetry, exhibit much larger variation even among the coumarins and are correlated with the amount of excess excitation energy. Differences in the solvation dynamics of 4AP and a selected coumarin, C151, are also observed in dimethyl sulfoxide demonstrating the molecularity of solvation i.e. solvation depends on the solute and does not solely reflect the dynamic properties of the solvent. These differences are attributed to specific solute-solvent interactions due to hydrogen bonding. In a weakly interacting solvent, benzonitrile, the solvation dynamics of 4AP and C151 are nearly identical.

10.
Chemistry ; 22(43): 15468-15474, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27624751

RESUMO

There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy-transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh-Cp-type metal complexes can be encapsulated inside a self-assembled M6 L4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co-encapsulation is observed. This principle is demonstrated by co-encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge-transfer interaction may also contribute to this effect. Charge-transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge-transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge-transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space.

11.
Phys Chem Chem Phys ; 17(32): 20715-24, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26204802

RESUMO

Complex formation and intermolecular excited-state proton transfer (ESPT) between a dihydroxy-1,8-naphthalimide photoacid and organic bases are investigated in polar aprotic solvents. First, quantum chemical calculations are used to explore the acid-base and spectroscopic properties and to identify energetically favorable complexes. The two hydroxyl groups of the photoacid enable stepwise formation of 1 : 1 and 1 : 2 complexes. Weak bases exhibit only hydrogen-bonding interactions whereas strong bases are able to deprotonate one of the hydroxyl groups resulting in strong negative cooperativity (K1≫ 4K2) in the formation of the 1 : 2 complex. Time-resolved fluorescence studies of the complexes provide strong indications of a three-step dissociation process. The species involved in the model are: a hydrogen-bonded complex, a hydrogen-bonded ion pair, a solvent separated ion pair, and a free ion pair.

12.
J Am Chem Soc ; 134(3): 1825-39, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22148321

RESUMO

5-(Diphenylphosphanyl)-10,15,20-triarylporphyrins (meso-phosphanylporphyrins) underwent complexations with palladium(II) and platinum(II) salts to afford phosphapalladacycle- and phosphaplatinacycle-fused coplanar porphyrin dimers, respectively, via regioselective peripheral ß-C-H activation of the meso-phosphanylporphyrin ligands. The optical and electrochemical properties of these metal-linked porphyrin dimers as well as their porphyrin monomer/dimer references were investigated by means of steady-state UV-vis absorption/fluorescence spectroscopy, cyclic and differential pulse voltammetry, time-resolved spectroscopy (fluorescence and transient absorption lifetimes and spectra), and magnetic circular dichroism spectroscopy. All the observed data clearly show that the palladium(II) and platinum(II) linkers play crucial roles in the electronic communication between two porphyrin chromophores at the one-electron oxidized state and in the singlet-triplet intersystem-crossing process at the excited state. It has also been revealed that the C-Pt-C linkage makes more significant impacts on these fundamental properties than the C-Pd-C linkage. Furthermore, density functional theory calculations on the metal-linked porphyrin dimers have suggested that the antibonding dπ-pπ orbital interaction between the peripherally attached metal and adjacent pyrrolic ß-carbon atoms destabilizes the highest occupied molecular orbitals of the porphyrin π-systems and accounts for the observed unique absorption properties. On the basis of these experimental and theoretical results, it can be concluded that the linear carbon-metal-carbon linkages weakly but definitely perturb the optical, photophysical, and electrochemical properties of the phosphametallacycle-linked coplanar porphyrin dimers.


Assuntos
Carbono/química , Complexos de Coordenação/química , Paládio/química , Platina/química , Porfirinas/química , Dimerização , Técnicas Eletroquímicas , Modelos Moleculares , Análise Espectral
13.
Phys Chem Chem Phys ; 14(37): 13019-26, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22907041

RESUMO

The excited-state proton transfer and subsequent intramolecular ion pair formation of a cupreidine-derived Cinchona organocatalyst (BnCPD) were studied in THF-water mixtures using picosecond time-resolved fluorescence together with global analysis. Full spectral and kinetic characterization of all the fluorescent species allowed us to monitor the 3-step process for the ion pair dissociation. In the first step, proton transfer occurs through a water "wire" from the 6-hydroxyquinoline unit (excited-state acid) to the covalently bonded basic quinuclidine moiety, resulting in a hydrogen bonded ion pair. This was confirmed by the observed kinetic isotope effect in the presence of heavy water. In the second step, the formed ions are further solvated by a few solvent molecules, producing the solvent separated ion pair. Finally, a fully solvated ion pair is formed. The 5-exponential global model derived from the reaction scheme describes the experimental data very well.


Assuntos
Cinchona/química , Catálise , Óxido de Deutério/química , Ligação de Hidrogênio , Íons/química , Cinética , Prótons , Quinina/análogos & derivados , Quinina/química , Espectrometria de Fluorescência , Água/química
14.
J Phys Chem B ; 126(25): 4723-4730, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35727678

RESUMO

The excited-state properties of an amphiphilic porphyrin-fullerene dyad and of its porphyrin analogue adsorbed at the dodecane/water interface are investigated by using surface second-harmonic generation. Although the porphyrin is formally centrosymmetric, the second-harmonic spectra of both compounds are dominated by the intense Soret band of the porphyrin. Polarization-selective measurements and molecular dynamics simulations suggest an angle of about 45° between the donor-acceptor axis and the interfacial plane, with the porphyrin interacting mostly with the nonpolar phase. Time-resolved measurements reveal a marked concentration dependence of the dynamics of both compounds upon Q-band excitation, indicating the occurrence of intermolecular quenching processes. The significant differences in dynamics and spectra between the dyad and the porphyrin analogue are explained by a self-quenching of the excited dyad via an intermolecular electron transfer.

15.
J Org Chem ; 75(15): 5178-94, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20593884

RESUMO

Synthesis and characterization of three phthalocyanine-fullerene (Pc-C(60)) dyads, corresponding monoisomeric phthalocyanines (Pc), and building blocks, phthalonitriles, are described. Six novel bisaryl phthalonitriles were prepared by the Suzuki-Miyaura coupling reaction from trifluoromethanesulfonic acid 2,3-dicyanophenyl ester and various oxaborolanes. Two phthalonitriles were selected for the synthesis of A(3)B- and A(2)B(2)-type phthalocyanines. Phthalonitrile 4 has a bulky 3,5-di-tert-butylphenyl substituent at the alpha-phthalo position, which forces only one regioisomer to form and greatly increases the solubility of phthalocyanine. Phthalonitrile 8 has a 3-phenylpropanol side chain at the alpha-position making further modifications of the side group possible. Synthesized monoisomeric A(3)B- and A(2)B(2)-type phthalocyanines are modified by attachment of malonic residues. Finally, fullerene is covalently linked to phthalocyanine with one or two malonic bridges to produce Pc-C(60) dyads. Due to the monoisomeric structure and increased solubility of phthalocyanines, the quality of NMR spectra of the compounds is enhanced significantly, making detailed NMR analysis of the structures possible. The synthesized dyads have different orientations of phthalocyanine and fullerene, which strongly influence the electron transfer (ET) from phthalocyanine to fullerene moiety. Fluorescence quenchings of the dyads were measured in both polar and nonpolar solvents, and in all cases, the quenching was more efficient in the polar environment. As expected, most efficient fluorescence quenching was observed for dyad 20b, with two linkers and phthalocyanine and fullerene in face-to-face orientation.

16.
Photochem Photobiol Sci ; 9(7): 949-59, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20485815

RESUMO

Photoinduced electron transfer reactions of phthalalocyanine-fullerene dyads, in which donor and acceptor moieties are covalently linked to each other, with one or two malonic linkers, were studied. In the dyads with two linkers, phthalocyanine and fullerene have mutual orientations, face-to-face or face-to-tail, which differ from each other and influence photoinduced electron transfer processes. Quantitative spectroscopic and time-resolved spectroscopic measurements were done in polar and non-polar solvents at room temperature and at several reduced temperatures. The emission spectra of the double-linked dyads were different from that of the reference phthalocyanine showing a shoulder at the red part of the spectrum, emission decays were two-exponential and emission lifetimes depend on monitoring wavelengths. These facts support, for the dyads with two linkers, the formation of an emissive intramolecular exciplex preceding the charge separated state. For these dyads the formation times of the charge separated state, approximately 0.4 ps and 0.8 ps for the face-to-face and face-to-tail isomers, respectively, were independent of temperature and the reaction is considered to be quantum tunneling in nature. The charge recombination times were temperature dependent, but decreased with the decrease of temperature from roughly 1.2 ns at room temperature to 0.7 ns at 190 K.

17.
J Phys Chem A ; 114(1): 268-77, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19928821

RESUMO

Singlet-singlet energy transfer in self-assembled via axial coordination of imidazole-appended (at different positions of one of the meso-phenyl entities) free-base tetraphenylporphyrin, H(2)PIm, to either zinc phthalocyanine, ZnPc, or zinc naphthalocyanine, ZnNc, dyads is investigated in noncoordinating solvents, o-dichlorobenzene and toluene, using both steady-state and time-resolved transient absorption techniques. The newly formed supramolecular dyads were fully characterized by spectroscopic, computational, and electrochemical methods. The binding constants measured from optical absorption spectral data were found to be in the range of 10(4)-10(5) M(-1) for the 1:1 dyads, suggesting fairly stable complex formation. Electrochemical and computational studies suggested that photoinduced electron transfer is a thermodynamically unfavorable process when free-base porphyrin is excited in these dyads. Selective excitation of the donor free-base porphyrin entity was possible in both types of dyads formed by either of the ZnPc or ZnNc energy acceptors. Efficient singlet-singlet energy transfer was observed in these dyads, and the position of imidazole linkage on the free-base porphyrin entity, although flexible, seems to have some control over the overall efficiency of excited energy transfer process. Kinetics of energy transfer was monitored by performing transient absorption measurements using both up-conversion and pump-probe techniques. Such studies revealed ultrafast singlet-singlet energy transfer in the studied dyads with time constants on the order of 2-25 ps depending upon the type of the dyad.


Assuntos
Corantes Fluorescentes/química , Indóis/química , Compostos Organometálicos/química , Porfirinas/química , Clorobenzenos/química , Transferência de Energia , Isoindóis , Cinética , Ligantes , Estrutura Molecular , Tolueno/química , Compostos de Zinco
18.
RSC Adv ; 10(40): 23682-23689, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517311

RESUMO

Characterization of propyl acetate/butyronitrile (PA/BuCN) mixtures by various spectroscopic techniques is described. The neat solvents have identical viscosities and refractive indices but their dielectric constants differ significantly. Detailed solvatochromic and titration data show that the mixtures do not exhibit specific solute-solvent interactions or significant dielectric enrichment effects. Therefore, the mixtures are ideally suited for investigating the effect of dielectric stabilization on (photo)chemical reactions. Dynamic Stokes shift experiments performed on two push-pull probes demonstrate that the solvation dynamics are significantly decelerated in the mixtures as compared to the neat solvents. Therefore, the mixtures allow for varying both the extent and time scale of the dielectric stabilization in a predictable manner.

19.
Chem Sci ; 11(30): 7963-7971, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34094165

RESUMO

Excited-state proton transfer (ESPT) to solvent is often explained according to the two-step Eigen-Weller model including a contact ion pair (CIP*) as an intermediate, but general applicability of the model has not been thoroughly examined. Furthermore, examples of the spectral identification of CIP* are scarce. Here, we report on a detailed investigation of ESPT to protic (H2O, D2O, MeOH and EtOH) and aprotic (DMSO) solvents utilizing a broadband fluorescence technique with sub-200 fs time resolution. The time-resolved spectra are decomposed into contributions from the protonated and deprotonated species and a clear signature of CIP* is identified in DMSO and MeOH. Interestingly, the CIP* intermediate is not observable in aqueous environment although the dynamics in all solvents are multi-exponential. Global analysis based on the Eigen-Weller model is satisfactory in all solvents, but the marked mechanistic differences between aqueous and organic solvents cast doubt on the physical validity of the rate constants obtained.

20.
Chem Sci ; 10(45): 10629-10639, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34040711

RESUMO

Understanding structure-property relationships in multichromophoric molecular architectures is a crucial step in establishing new design principles in organic electronics as well as to fully understand how nature exploits solar energy. Here, we study the excited state dynamics of three bichromophores consisting of two perylene chromophores linked to three different crown-ether backbones, using stationary and ultrafast electronic spectroscopy combined with molecular dynamics simulations. The conformational space available to the bichromophores depends on the structure and geometry of the crown-ether and can be significantly changed upon cation binding, strongly affecting the excited-state dynamics. We show that, depending on the conformational restrictions and the local environment, the nature of the excited state varies greatly, going from an excimer to a symmetry-broken charge separated state. These results can be rationalised in terms of a structure-property relationship that includes the effect of the local environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA