Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 73(18): 6186-6206, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35662335

RESUMO

The multidrug and toxic compound extrusion (MATE) protein family has been implicated in the transport of a diverse range of molecules, including specialized metabolites. In tobacco (Nicotiana tabacum), only a limited number of MATE transporters have been functionally characterized, and no MATE transporter has been studied in the context of flavonoid transport in this plant species so far. In the present study, we characterize two homeologous tobacco MATE genes, NtMATE21 and NtMATE22, and demonstrate their role in flavonol transport and in plant growth and development. The expression of these two genes was reported to be up-regulated in trichomes as compared with the trichome-free leaf. The transcript levels of NtMATE21 and NtMATE22 were found to be higher in flavonol overproducing tobacco transgenic lines as compared with wild type tobacco. The two transporters were demonstrated to be localized to the plasma membrane. Genetic manipulation of NtMATE21 and NtMATE22 led to altered growth phenotypes and modulated flavonol contents in N. tabacum. The ß-glucuronidase and green fluorescent protein fusion transgenic lines of promoter regions suggested that NtMATE21 and NtMATE22 are exclusively expressed in the trichome heads in the leaf tissue and petals. Moreover, in a transient transactivation assay, NtMYB12, a flavonol-specific MYB transcription factor, was found to transactivate the expression of NtMATE21 and NtMATE22 genes. Together, our results strongly suggest the involvement of NtMATE21 and NtMATE22 in flavonol transport as well as in the regulation of plant growth and development.


Assuntos
Regulação da Expressão Gênica de Plantas , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Flavonóis/metabolismo , Fatores de Transcrição/metabolismo , Glucuronidase/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
2.
Plant Mol Biol ; 102(6): 625-644, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31965448

RESUMO

KEY MESSAGE: Comprehensive transcriptome analysis suggested that the primary metabolism is modulated to augment the supply of substrates towards secondary metabolism operating in the glandular trichomes of Nicotiana tabacum. The comparative gene expression and co-expression network analysis revealed that certain members of transcription factor genes belonging to the MYB, HD-ZIP, ERF, TCP, SRS, WRKY and DOF families may be involved in the regulation of metabolism and/other aspects in the glandular trichomes of N. tabacum The glandular trichomes of Nicotiana tabacum are highly productive in terms of secondary metabolites and therefore have been projected to be used as a prognostic platform for metabolic engineering of valuable natural products. For obvious reasons, detailed studies pertaining to the metabolic and gene regulatory networks operating in the glandular trichomes of N. tabacum are of pivotal significance to be undertaken. We have carried out next-generation sequencing of glandular trichomes of N. tabcaum and investigated differential gene expression among different tissues, including trichome-free leaves. We identified a total of 37,269 and 37,371 genes, expressing in trichome free leaf and glandular trichomes, respectively, at a cutoff of FPKM ≥ 1. The analysis revealed that different pathways involved with the primary metabolism are modulated in glandular trichomes of N. tabacum, providing a plausible explanation for the enhanced biosynthesis of secondary metabolism in the glandular trichomes. Further, comparative gene expression analysis revealed several genes, which display preferential expression in the glandular trichomes and thereby seem to be potential candidate genes for future studies in connection to the discovery of novel trichome specific promoters. The present study also led to the comprehensive identification of 1750 transcription factor genes expressing at a cutoff of FPKM ≥ 1 in the glandular trichomes of N. tabacum. The clustering and co-expression analysis suggested that transcription factor genes belonging to HD-ZIP, ERF, WRKY, MYB, TCP, SRS and DOF families may be the major players in the regulation of gene expression in the glandular trichomes of N. tabacum. To the best of our knowledge, the present work is the first effort towards detailed identification of genes, especially regulatory genes expressing in the glandular trichomes of N. tabacum. The data resource and the empirical findings from present work in all probability must, therefore, provide a reference and background context for future work aiming at deciphering molecular mechanism of regulation of secondary metabolism and gene expression in the glandular trichomes of N. tabacum.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Nicotiana/genética , Proteínas de Plantas/genética , Tricomas/genética , Aminoácidos/biossíntese , Aminoácidos/genética , Parede Celular , Regulação da Expressão Gênica de Plantas , Glicólise/genética , Metabolismo dos Lipídeos/genética , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Metabolismo Secundário/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Transcriptoma
3.
Int J Biol Macromol ; 253(Pt 8): 127508, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865377

RESUMO

Despite the high economic value of the monoterpene-rich essential oils from different genotypes of Cymbopogon, the knowledge about the genes and metabolic route(s) involved in the biosynthesis of aromatic monoterpenes in this genus is limited. In the present study, a comprehensive transcriptome analysis of four genotypes of Cymbopogon, displaying diverse quantitative and qualitative profiles of volatile monoterpenes in their essential oils has been carried out. The comparative analysis of the deduced protein sequences corresponding to the transcriptomes of the four genotypes revealed 4609 genotype-specific orthogroups, which might contribute in defining genotype-specific phenotypes. The transcriptome data mining led to the identification of unigenes involved in the isoprenogenesis. The homology searches, combined with the phylogenetic and expression analyses provided information about candidate genes concerning the biosynthesis of monoterpene aldehyde, monoterpene alcohol, and monoterpene esters. In addition, the present study suggests a potential role of geranial reductase like enzyme in the biosynthesis of monoterpene aldehyde in Cymbopogon spp. The detailed analysis of the candidate pathway genes suggested that multiple enzymatic routes might be involved in the biosynthesis of aromatic monoterpenes in the genus Cymbopogon. The present study provides deeper insights into the biosynthesis of monoterpenes, which will be useful for the genetic improvement of these aromatic grasses.


Assuntos
Cymbopogon , Óleos Voláteis , Monoterpenos/metabolismo , Transcriptoma , Cymbopogon/genética , Cymbopogon/metabolismo , Filogenia , Aldeídos Monoterpenos e Cetonas , Óleos Voláteis/metabolismo , Genótipo
4.
Plant Sci ; 334: 111780, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390920

RESUMO

Lipoxygenase (LOX) enzymes play a pivotal role in the biosynthesis of oxylipins. The phyto-oxilipins have been implicated in diverse aspects of plant biology, from regulating plant growth and development to providing tolerance against biotic and abiotic stresses. C. sativa is renowned for its bioactive secondary metabolites, namely cannabinoids. LOX route is assumed to be involved in the biosynthesis of hexanoic acid, which is one of the precursors of cannabinoids of C. sativa. For obvious reasons, the LOX gene family deserves thorough investigation in the C. sativa. Genome-wide analysis revealed the presence of 21 LOX genes in C. sativa, which can be further grouped into 13-LOX and 9-LOX depending upon their phylogeny as well as the enzyme activity. The promoter regions of the CsLOX genes were predicted to contain cis-acting elements involved in phytohormones responsiveness and stress response. The qRT-PCR-based expression analysis of 21 LOX genes revealed their differential expression in different plant parts (root, stem, young leaf, mature leaf, sugar leaf, and female flower). The majority of CsLOX genes displayed preferential expression in the female flower, which is the primary site for the biosynthesis of cannabinoids. The highest LOX activity and expression level of a jasmonate marker gene were reported in the female flowers among all the plant parts. Several CsLOX genes were found to be upregulated by MeJA treatment. Based on the transient expression in Nicotiana benthamiana and the development of stable Nicotiana tabacum transgenic lines, we demonstrate that CsLOX13 encodes functional lipoxygenase and play an important role in the biosynthesis of oxylipins.


Assuntos
Canabinoides , Cannabis , Cannabis/genética , Cannabis/metabolismo , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas , Folhas de Planta/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
5.
Gene ; 783: 145554, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33705813

RESUMO

The transporters belonging to the MATE family are involved in the transportation of diverse ligands, including metal ions and small organic molecules, and, therefore, play an important role in plant biology. Our genome-wide analysis led to the identification of 138 MATE genes in N. tabacum, which were grouped into four major phylogenetic clades. The expression of several NtMATE genes was reported to be differential in different tissues, namely young leaf, mature leaf, stem, root, and mature flower. The upstream regions of the NtMATE genes were predicted to contain several cis-acting elements associated with hormonal, developmental, and stress responses. Some of the genes were found to display induced expression following methyl jasmonate treatment. The co-expression analysis revealed 126 candidate transcription factor genes that might be involved in the transcriptional regulation of 21 NtMATE genes. Certain MATE genes (NtMATE81, NtMATE82, NtMATE88, and NtMATE89) were predicted to be targeted by micro RNAs (nta-miR167a, nta-miR167b, nta-miR167c, nta-miR167d and nta-miR167e). The computational analysis of MATE transporters provided insights into the key amino acid residues involved in the binding of the alkaloids. Further, the putative function of some of the NtMATE transporters was also revealed. The present study develops a solid foundation for the functional characterization of MATE transporter genes in N. tabacum.


Assuntos
Genoma de Planta , Proteínas de Membrana Transportadoras/genética , Nicotiana/genética , Proteínas de Plantas/genética , Acetatos/metabolismo , Motivos de Aminoácidos , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Família Multigênica , Oxilipinas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA