Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant J ; 115(2): 414-433, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37036138

RESUMO

Sensory plastids are important in plant responses to environmental changes. Previous studies show that MutS HOMOLOG 1 (MSH1) perturbation in sensory plastids induces heritable epigenetic phenotype adjustment. Previously, the PsbP homolog DOMAIN-CONTAINING PROTEIN 3 (PPD3), a protein of unknown function, was postulated to be an interactor with MSH1. This study investigates the relationship of PPD3 with MSH1 and with plant environmental sensing. The ppd3 mutant displays a whole-plant phenotype variably altered in growth rate, flowering time, reactive oxygen species (ROS) modulation and response to salt, with effects on meristem growth. Present in both chloroplasts and sensory plastids, PPD3 colocalized with MSH1 in root tips but not in leaf tissues. The suppression or overexpression of PPD3 affected the plant growth rate and stress tolerance, and led to a heritable, heterogenous 'memory' state with both dwarfed and vigorous growth phenotypes. Gene expression and DNA methylome data sets from PPD3-OX and derived memory states showed enrichment in growth versus defense networks and meristem effects. Our results support a model of sensory plastid influence on nuclear epigenetic behavior and ppd3 as a second trigger, functioning within meristem plastids to recalibrate growth plasticity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Plastídeos/genética , Plastídeos/metabolismo , Cloroplastos/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo
2.
Plant Physiol ; 178(2): 672-683, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30135097

RESUMO

Plastids comprise a complex set of organelles in plants that can undergo distinctive patterns of differentiation and redifferentiation during their lifespan. Plastids localized to the epidermis and vascular parenchyma are distinctive in size, structural features, and functions. These plastids are termed "sensory" plastids, and here we show their proteome to be distinct from chloroplasts, with specialized stress-associated features. The distinctive sensory plastid proteome in Arabidopsis (Arabidopsis thaliana) derives from spatiotemporal regulation of nuclear genes encoding plastid-targeted proteins. Perturbation caused by depletion of the sensory plastid-specific protein MutS HOMOLOG1 conditioned local, programmed changes in gene networks controlling chromatin, stress-related phytohormone, and circadian clock behavior and producing a global, systemic stress response in the plant. We posit that the sensory plastid participates in sensing environmental stress, integrating this sensory function with epigenetic and gene expression circuitry to condition heritable stress memory.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Estresse Fisiológico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Especificidade de Órgãos , Plastídeos/metabolismo , Proteoma
3.
Plant Physiol ; 168(1): 222-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25736208

RESUMO

Evidence is compelling in support of a naturally occurring epigenetic influence on phenotype expression in land plants, although discerning the epigenetic contribution is difficult. Agriculturally important attributes like heterosis, inbreeding depression, phenotypic plasticity, and environmental stress response are thought to have significant epigenetic components, but unequivocal demonstration of this is often infeasible. Here, we investigate gene silencing of a single nuclear gene, MutS HOMOLOG1 (MSH1), in the tomato (Solanum lycopersicum) 'Rutgers' to effect developmental reprogramming of the plant. The condition is heritable in subsequent generations independent of the MSH1-RNA interference transgene. Crossing these transgene-null, developmentally altered plants to the isogenic cv Rutgers wild type results in progeny lines that show enhanced, heritable growth vigor under both greenhouse and field conditions. This boosted vigor appears to be graft transmissible and is partially reversed by treatment with the methylation inhibitor 5-azacytidine, implying the influence of mobile, epigenetic factors and DNA methylation changes. These data provide compelling evidence for the feasibility of epigenetic breeding in a crop plant.


Assuntos
Cruzamento , Epigênese Genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Adaptação Fisiológica/genética , Arabidopsis/genética , Cruzamentos Genéticos , Metilação de DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Padrões de Herança/genética , Fenótipo , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reprodução , Plântula/crescimento & desenvolvimento , Análise de Sequência de RNA , Supressão Genética , Transgenes
5.
Genome Biol ; 23(1): 167, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927734

RESUMO

BACKGROUND: Plants undergo programmed chromatin changes in response to environment, influencing heritable phenotypic plasticity. The RNA-directed DNA methylation (RdDM) pathway is an essential component of this reprogramming process. The relationship of epigenomic changes to gene networks on a genome-wide basis has been elusive, particularly for intragenic DNA methylation repatterning. RESULTS: Epigenomic reprogramming is tractable to detailed study and cross-species modeling in the MSH1 system, where perturbation of the plant-specific gene MSH1 triggers at least four distinct nongenetic states to impact plant stress response and growth vigor. Within this system, we have defined RdDM target loci toward decoding phenotype-relevant methylome data. We analyze intragenic methylome repatterning associated with phenotype transitions, identifying state-specific cytosine methylation changes in pivotal growth-versus-stress, chromatin remodeling, and RNA spliceosome gene networks that encompass 871 genes. Over 77% of these genes, and 81% of their central network hubs, are functionally confirmed as RdDM targets based on analysis of mutant datasets and sRNA cluster associations. These dcl2/dcl3/dcl4-sensitive gene methylation sites, many present as singular cytosines, reside within identifiable sequence motifs. These data reflect intragenic methylation repatterning that is targeted and amenable to prediction. CONCLUSIONS: A prevailing assumption that biologically relevant DNA methylation variation occurs predominantly in density-defined differentially methylated regions overlooks behavioral features of intragenic, single-site cytosine methylation variation. RdDM-dependent methylation changes within identifiable sequence motifs reveal gene hubs within networks discriminating stress response and growth vigor epigenetic phenotypes. This study uncovers components of a methylome "code" for de novo intragenic methylation repatterning during plant phenotype transitions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosina/metabolismo , Metilação de DNA , Epigênese Genética , Epigenoma , Regulação da Expressão Gênica de Plantas , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , RNA/metabolismo , RNA Interferente Pequeno/genética , Ribonuclease III/genética
6.
Front Plant Sci ; 12: 798243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154188

RESUMO

Crop resilience and yield stability are complex traits essential for food security. Sorghum bicolor is an important grain crop that shows promise for its natural resilience to drought and potential for marginal land production. We have developed sorghum lines in the Tx430 genetic background suppressed for MSH1 expression as a means of inducing de novo epigenetic variation, and have used these materials to evaluate changes in plant growth vigor. Plant crossing and selection in two distinct environments revealed features of phenotypic plasticity derived from MSH1 manipulation. Introduction of an epigenetic variation to an isogenic sorghum population, in the absence of selection, resulted in 10% yield increase under ideal field conditions and 20% increase under extreme low nitrogen conditions. However, incorporation of early-stage selection amplified these outcomes to 36% yield increase under ideal conditions and 64% increase under marginal field conditions. Interestingly, the best outcomes were derived by selecting mid-range performance early-generation lines rather than highest performing. Data also suggested that phenotypic plasticity derived from the epigenetic variation was non-uniform in its response to environmental variability but served to reduce genotype × environment interaction. The MSH1-derived growth vigor appeared to be associated with enhanced seedling root growth and altered expression of auxin response pathways, and plants showed evidence of cold tolerance, features consistent with observations made previously in Arabidopsis. These data imply that the MSH1 system is conserved across plant species, pointing to the value of parallel model plant studies to help devise effective plant selection strategies for epigenetic breeding in multiple crops.

7.
Philos Trans R Soc Lond B Biol Sci ; 375(1790): 20190182, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31787051

RESUMO

With the increasing impact of climate instability on agricultural and ecological systems has come a heightened sense of urgency to understand plant adaptation mechanisms in more detail. Plant species have a remarkable ability to disperse their progeny to a wide range of environments, demonstrating extraordinary resiliency mechanisms that incorporate epigenetics and transgenerational stability. Surprisingly, some of the underlying versatility of plants to adapt to abiotic and biotic stress emerges from the neofunctionalization of organelles and organellar proteins. We describe evidence of possible plastid specialization and multi-functional organellar protein features that serve to enhance plant phenotypic plasticity. These features appear to rely on, for example, spatio-temporal regulation of plastid composition, and unusual interorganellar protein targeting and retrograde signalling features that facilitate multi-functionalization. Although we report in detail on three such specializations, involving MSH1, WHIRLY1 and CUE1 proteins in Arabidopsis, there is ample reason to believe that these represent only a fraction of what is yet to be discovered as we begin to elaborate cross-species diversity. Recent observations suggest that plant proteins previously defined in one context may soon be rediscovered in new roles and that much more detailed investigation of proteins that show subcellular multi-targeting may be warranted. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Organelas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo
8.
Nat Commun ; 11(1): 5343, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093443

RESUMO

Plants transmit signals long distances, as evidenced in grafting experiments that create distinct rootstock-scion junctions. Noncoding small RNA is a signaling molecule that is graft transmissible, participating in RNA-directed DNA methylation; but the meiotic transmissibility of graft-mediated epigenetic changes remains unclear. Here, we exploit the MSH1 system in Arabidopsis and tomato to introduce rootstock epigenetic variation to grafting experiments. Introducing mutations dcl2, dcl3 and dcl4 to the msh1 rootstock disrupts siRNA production and reveals RdDM targets of methylation repatterning. Progeny from grafting experiments show enhanced growth vigor relative to controls. This heritable enhancement-through-grafting phenotype is RdDM-dependent, involving 1380 differentially methylated genes, many within auxin-related gene pathways. Growth vigor is associated with robust root growth of msh1 graft progeny, a phenotype associated with auxin transport based on inhibitor assays. Large-scale field experiments show msh1 grafting effects on tomato plant performance, heritable over five generations, demonstrating the agricultural potential of epigenetic variation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Metilação de DNA , Epigênese Genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , Mutação , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Nat Commun ; 11(1): 2214, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371941

RESUMO

MSH1 is a plant-specific protein. RNAi suppression of MSH1 results in phenotype variability for developmental and stress response pathways. Segregation of the RNAi transgene produces non-genetic msh1 'memory' with multi-generational inheritance. First-generation memory versus non-memory comparison, and six-generation inheritance studies, identifies gene-associated, heritable methylation repatterning. Genome-wide methylome analysis integrated with RNAseq and network-based enrichment studies identifies altered circadian clock networks, and phytohormone and stress response pathways that intersect with circadian control. A total of 373 differentially methylated loci comprising these networks are sufficient to discriminate memory from nonmemory full sibs. Methylation inhibitor 5-azacytidine diminishes the differences between memory and wild type for growth, gene expression and methylation patterning. The msh1 reprogramming is dependent on functional HISTONE DEACETYLASE 6 and methyltransferase MET1, and transition to memory requires the RNA-directed DNA methylation pathway. This system of phenotypic plasticity may serve as a potent model for defining accelerated plant adaptation during environmental change.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilação de DNA , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Característica Quantitativa Herdável , Interferência de RNA , Transgenes/genética , Adaptação Fisiológica/genética , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Desacetilase 6 de Histona/genética , Padrões de Herança/genética , Plantas Geneticamente Modificadas , Transdução de Sinais/genética
10.
Mol Plant ; 9(2): 245-260, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26584715

RESUMO

As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein-protein interactions data indicate that MSH1 also associates with the thylakoid membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%-10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Plastídeos/genética , Plastídeos/metabolismo , Tilacoides/genética
11.
Nat Commun ; 6: 6386, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25722057

RESUMO

Plant phenotypes respond to environmental change, an adaptive capacity that is at least partly transgenerational. However, epigenetic components of this interplay are difficult to measure. Depletion of the nuclear-encoded protein MSH1 causes dramatic and heritable changes in plant development, and here we show that crossing these altered plants with isogenic wild type produces epi-lines with heritable, enhanced growth vigour. Pericentromeric DNA hypermethylation occurs in a subset of msh1 mutants, indicative of heightened transposon repression, while enhanced growth epi-lines show large chromosomal segments of differential CG methylation, reflecting genome-wide reprogramming. When seedlings are treated with 5-azacytidine, root growth of epi-lines is restored to wild-type levels, implicating hypermethylation in enhanced growth. Grafts of wild-type floral stems to mutant rosettes produce progeny with enhanced growth and altered CG methylation strikingly similar to epi-lines, indicating a mobile signal when MSH1 is downregulated, and confirming the programmed nature of methylome and phenotype changes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Metilação de DNA , Epigênese Genética/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Azacitidina , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA/genética , Epigênese Genética/fisiologia , Biblioteca Gênica , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutação/genética , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Interferência de RNA , Análise de Sequência de DNA
12.
PLoS One ; 9(10): e108407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347794

RESUMO

MutS Homolog 1 (MSH1) encodes a plant-specific protein that functions in mitochondria and chloroplasts. We showed previously that disruption or suppression of the MSH1 gene results in a process of developmental reprogramming that is heritable and non-genetic in subsequent generations. In Arabidopsis, this developmental reprogramming process is accompanied by striking changes in gene expression of organellar and stress response genes. This developmentally reprogrammed state, when used in crossing, results in a range of variation for plant growth potential. Here we investigate the implications of MSH1 modulation in a crop species. We found that MSH1-mediated phenotypic variation in Sorghum bicolor is heritable and potentially valuable for crop breeding. We observed phenotypic variation for grain yield, plant height, flowering time, panicle architecture, and above-ground biomass. Focusing on grain yield and plant height, we found some lines that appeared to respond to selection. Based on amenability of this system to implementation in a range of crops, and the scope of phenotypic variation that is derived, our results suggest that MSH1 suppression provides a novel approach for breeding in crops.


Assuntos
Variação Genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Fenótipo , Cruzamento , Cloroplastos/genética , Cloroplastos/metabolismo , Produtos Agrícolas , Meio Ambiente , Interação Gene-Ambiente , Estudos de Associação Genética , Repetições de Microssatélites , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Sorghum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA