Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7954): 900-906, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922585

RESUMO

Sex chromosome disorders severely compromise gametogenesis in both males and females. In oogenesis, the presence of an additional Y chromosome or the loss of an X chromosome disturbs the robust production of oocytes1-5. Here we efficiently converted the XY chromosome set to XX without an additional Y chromosome in mouse pluripotent stem (PS) cells. In addition, this chromosomal alteration successfully eradicated trisomy 16, a model of Down's syndrome, in PS cells. Artificially produced euploid XX PS cells differentiated into mature oocytes in culture with similar efficiency to native XX PS cells. Using this method, we differentiated induced pluripotent stem cells from the tail of a sexually mature male mouse into fully potent oocytes, which gave rise to offspring after fertilization. This study provides insights that could ameliorate infertility caused by sex chromosome or autosomal disorders, and opens the possibility of bipaternal reproduction.


Assuntos
Engenharia Genética , Técnicas In Vitro , Oócitos , Cromossomo X , Animais , Feminino , Masculino , Camundongos , Oócitos/metabolismo , Oócitos/fisiologia , Cromossomo X/genética , Cromossomo Y/genética , Células-Tronco Pluripotentes/metabolismo , Síndrome de Down/genética , Síndrome de Down/terapia , Fertilização , Infertilidade/terapia , Homossexualidade Masculina , Transtornos dos Cromossomos Sexuais/complicações , Transtornos dos Cromossomos Sexuais/genética , Transtornos dos Cromossomos Sexuais/terapia , Engenharia Genética/métodos
2.
Cell ; 153(5): 1025-35, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706740

RESUMO

Unique among leukocytes, neutrophils follow daily cycles of release from and migration back into the bone marrow, where they are eliminated. Because removal of dying cells generates homeostatic signals, we explored whether neutrophil elimination triggers circadian events in the steady state. Here, we report that the homeostatic clearance of neutrophils provides cues that modulate the physiology of the bone marrow. We identify a population of CD62L(LO) CXCR4(HI) neutrophils that have "aged" in the circulation and are eliminated at the end of the resting period in mice. Aged neutrophils infiltrate the bone marrow and promote reductions in the size and function of the hematopoietic niche. Modulation of the niche depends on macrophages and activation of cholesterol-sensing nuclear receptors and is essential for the rhythmic egress of hematopoietic progenitors into the circulation. Our results unveil a process that synchronizes immune and hematopoietic rhythms and expand the ascribed functions of neutrophils beyond inflammation. PAPERFLICK:


Assuntos
Medula Óssea/fisiologia , Ritmo Circadiano , Neutrófilos/citologia , Neutrófilos/fisiologia , Animais , Movimento Celular , Senescência Celular , Feminino , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Receptores Nucleares Órfãos/metabolismo
3.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612551

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a solid-tumor malignancy. To enhance the treatment landscape of PDAC, a 3D model optimized for rigorous drug screening is essential. Within the PDAC tumor microenvironment, a dense stroma comprising a large extracellular matrix and cancer-associated fibroblasts (CAFs) is well-known for its vital role in modulating tumor growth, cellular heterogeneity, bidirectional paracrine signaling, and chemoresistance. In this study, we employed a fibroblast-populated collagen lattice (FPCL) modeling approach that has the ability to replicate fibroblast contractility in the collagenous matrix to build dense stroma. This FPCL model allows CAF differentiation by facilitating multifaceted cell-cell interactions between cancer cells and CAFs, with the differentiation further influenced by mechanical forces and hypoxia carried within the 3D structure. Our FPCL models displayed hallmark features, including ductal gland structures and differentiated CAFs with spindle shapes. Through morphological explorations alongside in-depth transcriptomic and metabolomic profiling, we identified substantial molecular shifts from the nascent to mature model stages and potential metabolic biomarkers, such as proline. The initial pharmacological assays highlighted the effectiveness of our FPCL model in screening for improved therapeutic strategies. In conclusion, our PDAC modeling platform mirrors complex tumor microenvironmental dynamics and offers an unparalleled perspective for therapeutic exploration.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Pâncreas , Hormônios Pancreáticos , Colágeno
4.
Cancer Sci ; 114(8): 3247-3258, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37197765

RESUMO

Metabolic alterations, especially in the mitochondria, play important roles in several kinds of cancers, including acute myeloid leukemia (AML). However, AML-specific molecular mechanisms that regulate mitochondrial dynamics remain elusive. Through the metabolite screening comparing CD34+ AML cells and healthy hematopoietic stem/progenitor cells, we identified enhanced lysophosphatidic acid (LPA) synthesis activity in AML. LPA is synthesized from glycerol-3-phosphate by glycerol-3-phosphate acyltransferases (GPATs), rate-limiting enzymes of the LPA synthesis pathway. Among the four isozymes of GPATs, glycerol-3-phosphate acyltransferases, mitochondrial (GPAM) was highly expressed in AML cells, and the inhibition of LPA synthesis by silencing GPAM or FSG67 (a GPAM-inhibitor) significantly impaired AML propagation through the induction of mitochondrial fission, resulting in the suppression of oxidative phosphorylation and the elevation of reactive oxygen species. Notably, inhibition of this metabolic synthesis pathway by FSG67 administration did not affect normal human hematopoiesis in vivo. Therefore, the GPAM-mediated LPA synthesis pathway from G3P represents a critical metabolic mechanism that specifically regulates mitochondrial dynamics in human AML, and GPAM is a promising potential therapeutic target.


Assuntos
Leucemia Mieloide Aguda , Dinâmica Mitocondrial , Humanos , Glicerol , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Aciltransferases , Fosfatos
5.
Immunity ; 37(2): 290-301, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22863835

RESUMO

The multistep sequence leading to leukocyte migration is thought to be locally regulated at the inflammatory site. Here, we show that broad systemic programs involving long-range signals from the sympathetic nervous system (SNS) delivered by adrenergic nerves regulate rhythmic recruitment of leukocytes in tissues. Constitutive leukocyte adhesion and migration in murine bone marrow (BM) and skeletal-muscle microvasculature fluctuated with circadian peak values at night. Migratory oscillations, altered by experimental jet lag, were implemented by perivascular SNS fibers acting on ß-adrenoreceptors expressed on nonhematopoietic cells and leading to tissue-specific, differential circadian oscillations in the expression of endothelial cell adhesion molecules and chemokines. We showed that these rhythms have physiological consequences through alteration of hematopoietic cell recruitment and overall survival in models of septic shock, sickle cell vaso-occlusion, and BM transplantation. These data provide unique insights in the leukocyte adhesion cascade and the potential for time-based therapeutics for transplantation and inflammatory diseases.


Assuntos
Movimento Celular/imunologia , Ritmo Circadiano/imunologia , Leucócitos/imunologia , Sistema Nervoso Simpático/imunologia , Fibras Adrenérgicas/imunologia , Fibras Adrenérgicas/metabolismo , Neurônios Adrenérgicos/imunologia , Neurônios Adrenérgicos/metabolismo , Anemia Falciforme/imunologia , Animais , Medula Óssea/metabolismo , Transplante de Medula Óssea/imunologia , Adesão Celular/imunologia , Quimiocinas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Proteínas de Fluorescência Verde , Humanos , Imuno-Histoquímica , Molécula 1 de Adesão Intercelular/genética , Isoproterenol/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Adrenérgicos beta/metabolismo , Choque Séptico/imunologia , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo
6.
Nature ; 525(7570): 528-32, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26374999

RESUMO

Blood polymorphonuclear neutrophils provide immune protection against pathogens, but may also promote tissue injury in inflammatory diseases. Although neutrophils are generally considered to be a relatively homogeneous population, evidence for heterogeneity is emerging. Under steady-state conditions, neutrophil heterogeneity may arise from ageing and replenishment by newly released neutrophils from the bone marrow. Aged neutrophils upregulate CXCR4, a receptor allowing their clearance in the bone marrow, with feedback inhibition of neutrophil production via the IL-17/G-CSF axis, and rhythmic modulation of the haematopoietic stem-cell niche. The aged subset also expresses low levels of L-selectin. Previous studies have suggested that in vitro-aged neutrophils exhibit impaired migration and reduced pro-inflammatory properties. Here, using in vivo ageing analyses in mice, we show that neutrophil pro-inflammatory activity correlates positively with their ageing whilst in circulation. Aged neutrophils represent an overly active subset exhibiting enhanced αMß2 integrin activation and neutrophil extracellular trap formation under inflammatory conditions. Neutrophil ageing is driven by the microbiota via Toll-like receptor and myeloid differentiation factor 88-mediated signalling pathways. Depletion of the microbiota significantly reduces the number of circulating aged neutrophils and dramatically improves the pathogenesis and inflammation-related organ damage in models of sickle-cell disease or endotoxin-induced septic shock. These results identify a role for the microbiota in regulating a disease-promoting neutrophil subset.


Assuntos
Senescência Celular/imunologia , Microbiota/imunologia , Neutrófilos/citologia , Neutrófilos/imunologia , Anemia Falciforme/sangue , Anemia Falciforme/microbiologia , Anemia Falciforme/patologia , Animais , Modelos Animais de Doenças , Eritrócitos Anormais/patologia , Inflamação/imunologia , Inflamação/patologia , Antígeno de Macrófago 1/metabolismo , Masculino , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Choque Séptico/imunologia , Choque Séptico/microbiologia , Choque Séptico/patologia , Transdução de Sinais , Receptores Toll-Like/imunologia
7.
J Clin Apher ; 36(5): 687-696, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34133767

RESUMO

BACKGROUND: Peripheral blood stem cell (PBSC) transplantation is a key treatment option for hematological diseases and is widely performed in clinical practice. Platelet loss is one of the major complications of PBSC apheresis, and platelet-rich plasma (PRP) return is considered in case of platelet decrease following apheresis; however, little is known about the frequency and severity of platelet loss and the efficacy of PRP return postapheresis. METHODS: We assessed changes in platelet counts following PBSC-related apheresis in 270 allogeneic (allo)- and 105 autologous (auto)-PBSC settings. We also evaluated the efficacy of PRP transfusion on platelet recovery postapheresis. RESULTS: In both allo- and auto-PBSC settings, the preapheresis platelet count (range, 84-385 and 33-558 × 109 /L, respectively) decreased postapheresis (range, 57-292 and 20-429 × 109 /L, respectively), whereas severe platelet decrease (<50 × 109 /L) was only observed in auto-PBSC patients (n = 9). We confirmed that platelet count before apheresis was a risk factor for severe platelet decrease (<50 × 109 /L) following auto-PBSC apheresis (odds ratio 0.749, P < .049). PRP return postapheresis facilitated platelet recovery in more than 80% of cases in both allo and auto settings. CONCLUSION: Lower platelet count preapheresis is a useful predictor of severe platelet decrease following auto-PBSC apheresis and PRP return is an effective process to facilitate platelet recovery postapheresis.


Assuntos
Remoção de Componentes Sanguíneos/métodos , Transplante de Células-Tronco de Sangue Periférico , Plasma Rico em Plaquetas , Remoção de Componentes Sanguíneos/efeitos adversos , Humanos , Contagem de Plaquetas , Transfusão de Plaquetas
8.
Blood ; 129(25): 3332-3343, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28336526

RESUMO

The developmental pathway for human megakaryocytes remains unclear, and the definition of pure unipotent megakaryocyte progenitor is still controversial. Using single-cell transcriptome analysis, we have identified a cluster of cells within immature hematopoietic stem- and progenitor-cell populations that specifically expresses genes related to the megakaryocyte lineage. We used CD41 as a positive marker to identify these cells within the CD34+CD38+IL-3RαdimCD45RA- common myeloid progenitor (CMP) population. These cells lacked erythroid and granulocyte-macrophage potential but exhibited robust differentiation into the megakaryocyte lineage at a high frequency, both in vivo and in vitro. The efficiency and expansion potential of these cells exceeded those of conventional bipotent megakaryocyte/erythrocyte progenitors. Accordingly, the CD41+ CMP was defined as a unipotent megakaryocyte progenitor (MegP) that is likely to represent the major pathway for human megakaryopoiesis, independent of canonical megakaryocyte-erythroid lineage bifurcation. In the bone marrow of patients with essential thrombocythemia, the MegP population was significantly expanded in the context of a high burden of Janus kinase 2 mutations. Thus, the prospectively isolatable and functionally homogeneous human MegP will be useful for the elucidation of the mechanisms underlying normal and malignant human hematopoiesis.


Assuntos
Hematopoese , Células Progenitoras de Megacariócitos/citologia , Células Progenitoras de Megacariócitos/metabolismo , Megacariócitos/citologia , Adulto , Animais , Antígenos CD/análise , Linhagem da Célula , Células Cultivadas , Humanos , Células Progenitoras de Megacariócitos/patologia , Megacariócitos/metabolismo , Camundongos Endogâmicos C57BL , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Glicoproteína IIb da Membrana de Plaquetas/análise , Transcriptoma
9.
Nature ; 502(7473): 637-43, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24107994

RESUMO

Cell cycle quiescence is a critical feature contributing to haematopoietic stem cell (HSC) maintenance. Although various candidate stromal cells have been identified as potential HSC niches, the spatial localization of quiescent HSCs in the bone marrow remains unclear. Here, using a novel approach that combines whole-mount confocal immunofluorescence imaging techniques and computational modelling to analyse significant three-dimensional associations in the mouse bone marrow among vascular structures, stromal cells and HSCs, we show that quiescent HSCs associate specifically with small arterioles that are preferentially found in endosteal bone marrow. These arterioles are ensheathed exclusively by rare NG2 (also known as CSPG4)(+) pericytes, distinct from sinusoid-associated leptin receptor (LEPR)(+) cells. Pharmacological or genetic activation of the HSC cell cycle alters the distribution of HSCs from NG2(+) periarteriolar niches to LEPR(+) perisinusoidal niches. Conditional depletion of NG2(+) cells induces HSC cycling and reduces functional long-term repopulating HSCs in the bone marrow. These results thus indicate that arteriolar niches are indispensable for maintaining HSC quiescence.


Assuntos
Arteríolas/citologia , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco , Animais , Medula Óssea/irrigação sanguínea , Divisão Celular , Separação Celular , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Nestina/metabolismo
10.
Adv Exp Med Biol ; 1122: 101-114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30937865

RESUMO

Bone marrow environments are composed of multiple cell types, most of which are thought to be derived from mesenchymal stem cells. In mouse bone marrow, stromal cells with CD45- Tie2- CD90- CD51+ CD105+ phenotype, Nestin-GFP+, CXCL12-abundant reticular (CAR) cells, PDGFRα+ Sca-1+ or CD51+ PDGFRα+, and Prx-1-derived CD45- Ter119- PDGFRα+ Sca-1+ populations select for MSC activity. There is evidence that these stromal cell populations display some significant overlap with each other and comprise important cellular constituents of the hematopoietic stem cell niche. Moreover, these mesenchymal cell populations share characteristics in their location as they all are found around bone marrow vessels (can be called "pericytes"). In this chapter, with reviewing the recent literatures, how the pericytes relate to physiological and pathological hematopoiesis is argued.


Assuntos
Medula Óssea , Hematopoese , Células-Tronco Mesenquimais/citologia , Pericitos/citologia , Animais , Células da Medula Óssea , Humanos , Camundongos , Nicho de Células-Tronco
11.
Biol Blood Marrow Transplant ; 24(11): 2302-2309, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29909153

RESUMO

Bloodstream infection (BSI) is a well-known cause of morbidity and mortality in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients. Here, we conducted a retrospective study to assess the morbidity, etiology, risk factors, and outcomes of BSI in the postengraftment period (PE-BSI) after allo-HSCT. Forty-three of 316 patients (13.6%) developed 57 PE-BSI episodes, in which 62 pathogens were isolated: Gram-positive bacteria, gram-negative bacteria, and fungi, respectively, accounted for 54.8%, 35.5%, and 9.7% of the isolates. Multivariate analysis revealed methylprednisolone use for graft-versus-host disease (GVHD) prophylaxis (odds ratio [OR], 6.49; 95% confidence interval [CI], 1.49 to 28.2; P = .013) and acute gastrointestinal GVHD (GI-GVHD) (OR, 8.82; 95% CI, 3.99 to 19.5; P < .0001) as risk factors for developing PE-BSI. This finding suggested that GI-GVHD increases the risk of bacterial translocation and subsequent septicemia. Moreover, among patients with GI-GVHD, insufficient response to corticosteroids, presumably related to an intestinal dysbiosis, significantly correlated with this complication. Patients with PE-BSI presented worse outcome compared with those without (3-year overall survival, 47.0% versus 18.6%; P < .001). Close microbiologic monitoring for BSIs and minimizing intestinal dysbiosis may be crucial to break the vicious cycle between GI-GVHD and bacteremia and to improve transplant outcomes especially in patients who require additional immunosuppressants.


Assuntos
Bacteriemia/etiologia , Trato Gastrointestinal/patologia , Doença Enxerto-Hospedeiro/complicações , Transplante de Células-Tronco Hematopoéticas/métodos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo/métodos , Adolescente , Adulto , Idoso , Bacteriemia/patologia , Feminino , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
12.
Rinsho Ketsueki ; 56(10): 1888-93, 2015 Oct.
Artigo em Japonês | MEDLINE | ID: mdl-26458426

RESUMO

Somatic stem cells self-renew to maintain tissue homeostasis for the lifetime of organisms through tightly controlled proliferation and differentiation. Hematopoietic stem cells (HSCs) are essentially required for hematopoietic homeostasis. Therefore, they not only ensure lifelong replenishment of all blood lineages, but also maintain a constant pool. Cell cycle quiescence is a critical feature contributing to stem cell maintenance. Recent studies have highlighted the importance of bone marrow (BM) microenvironments that regulate HSC functions (HSC niches). In the HSC field, there has been considerable interest and debate regarding whether or not quiescence and proliferation of HSCs is regulated by distinct niches. Previous reports suggest that quiescent HSCs reside near osteoblasts in the BM whereas actively cycling HSCs are found near sinusoids. However, this popular concept has not been supported by rigorous analyses. To gain more insight into the spatial localization of HSCs, we have developed a whole-mount staining technique that allows precise measurements of 3D distances of HSCs from structures and allows computational simulation to define the significance of these interactions. This novel approach has allowed us to uncover two distinct types of vessels associated with quiescent and proliferating HSCs and to underscore the importance of arteriolar vessels for stem cell quiescence. We will discuss the crosstalk between the two hematopoietic and mesenchymal stem cells with a review of the recent literature.


Assuntos
Células-Tronco Hematopoéticas , Nicho de Células-Tronco , Animais , Medula Óssea/irrigação sanguínea , Medula Óssea/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Neovascularização Fisiológica , Osteoblastos/citologia , Osteoblastos/metabolismo
13.
Rinsho Ketsueki ; 56(6): 606-13, 2015 Jun.
Artigo em Japonês | MEDLINE | ID: mdl-26256869

RESUMO

Identification of cellular constituents of the hematopoietic stem cell (HSC) niche has recently been the subject of intensive investigation. To investigate the spatial localization of the HSC niches in bone marrow, we have established a whole-mount immunofluorescence imaging technique in which the 3D spatial relationships between stromal structures and HSCs in the BM can be precisely determined. The imaging assessment combined with computational simulations has uncovered a significant association between HSCs and arterioles, ensheathed exclusively by rare Nestin(bright) NG2⁺ pericytes (Nes(peri) cells), distinct from sinusoid-associated Nestin(dim) Leptin receptor (LepR)⁺ (Nes(retic)) cells which reportedly represent peri-vascular niche cells. Depletion of NG2⁺ cells using NG2-creERTM / inducible diphtheria toxin receptor (iDTR) mice changed HSC localization away from arterioles, induced HSC cycling and reduced long-term repopulation of HSCs in BM, suggesting that periarteriolar NG2⁺ cells form quiescent niches for HSCs. These results form the basis of studies that will allow us to genetically dissect the functions of distinct vascular niches. This vascular niche model, in which arterioles and sinusoids differentially regulate HSC quiescence and proliferation, respectively, have implications for the behavior of healthy HSC and may be useful in the future for evaluating the niches for cancer (leukemic) stem cells.


Assuntos
Medula Óssea/irrigação sanguínea , Linhagem da Célula , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco , Animais , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Neoplasias/patologia
14.
Nihon Rinsho ; 73(5): 739-44, 2015 May.
Artigo em Japonês | MEDLINE | ID: mdl-25985624

RESUMO

The fate of stem cells is tightly controlled by specialized microenvironments (niches). Cell cycle quiescence is a key behavior of stem cells, which protects them from being exhausted by exogenous insults. Since the discovery of cancer stem cells, which are quiescent and thus resistant to anti-cancer therapy, there has been considerable interest regarding whether or not there are distinct niches for quiescent and expanding cancer cells, respectively. In our recent study using whole-mount immunofluorescence imaging techniques, we found that arteriolar niches promote hematopoietic stem cell (HSC) dormancy and that the NG2+ peri-arteriolar niche cells themselves are quiescent, suggesting that bone marrow arterioles comprise a specialized microenvironment that promotes quiescence of both HSCs and niche cells. In this review, we will argue about the advance of our knowledge on normal stem cell niches and the roles of microenvironments in cancer.


Assuntos
Células-Tronco Neoplásicas/citologia , Nicho de Células-Tronco , Animais , Medula Óssea , Reprogramação Celular , Células-Tronco Hematopoéticas/citologia , Humanos , Neoplasias/patologia
15.
Blood ; 119(17): 3962-5, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22422821

RESUMO

The mechanisms mediating hematopoietic stem and progenitor cell (HSPC) mobilization by G-CSF are complex. We have found previously that G-CSF-enforced mobilization is controlled by peripheral sympathetic nerves via norepinephrine (NE) signaling. In the present study, we show that G-CSF likely alters sympathetic tone directly and that methods to increase adrenergic activity in the BM microenvironment enhance progenitor mobilization. Peripheral sympathetic nerve neurons express the G-CSF receptor and ex vivo stimulation of peripheral sympathetic nerve neurons with G-CSF reduced NE reuptake significantly, suggesting that G-CSF potentiates the sympathetic tone by increasing NE availability. Based on these data, we investigated the NE reuptake inhibitor desipramine in HSPC mobilization. Whereas desipramine did not by itself elicit circulating HSPCs, it increased G-CSF-triggered mobilization efficiency significantly and rescued mobilization in a model mimicking "poor mobilizers." Therefore, these data suggest that blockade of NE reuptake may be a novel therapeutic target to increase stem cell yield in patients.


Assuntos
Movimento Celular/fisiologia , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Norepinefrina/metabolismo , Animais , Células Cultivadas , Imunofluorescência , Fator Estimulador de Colônias de Granulócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/metabolismo
16.
iScience ; 27(5): 109735, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706843

RESUMO

Lysosomes, the hub of metabolic signaling, are associated with various diseases and participate in autophagy by supplying nutrients to cells under nutrient starvation. However, their function and regulation under glucose starvation remain unclear and are studied herein. Under glucose starvation, lysosomal protein expression decreased, leading to the accumulation of damaged lysosomes. Subsequently, cell death occurred via ferroptosis and iron accumulation due to DMT1 degradation. GPX4, a key factor in ferroptosis inhibition located on the outer membrane of lysosomes, accumulated in lysosomes, especially under glucose starvation, to protect cells from ferroptosis. ALDOA, GAPDH, NAMPT, and PGK1 are also located on the outer membrane of lysosomes and participate in lysosomal function. These enzymes did not function effectively under glucose starvation, leading to lysosomal dysfunction and ferroptosis. These findings may facilitate the treatment of lysosomal-related diseases.

17.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719751

RESUMO

Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3ß was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3ß and that GSK3ß inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3ß axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3ß inhibitors is a potential therapeutic strategy for leukoencephalopathy.


Assuntos
Colesterol , Quinase 2 de Adesão Focal , Glicogênio Sintase Quinase 3 beta , Camundongos Knockout , Mitocôndrias , Biossíntese de Proteínas , Proteína de Ligação a Elemento Regulador de Esterol 2 , Animais , Humanos , Camundongos , Colesterol/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Quinase 2 de Adesão Focal/genética , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Transdução de Sinais/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
18.
Int J Hematol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801563

RESUMO

Congenital antithrombin (AT) or serpin C1 deficiency, caused by a SERPINC1 abnormality, is a high-risk factor for venous thrombosis. SERPINC1 is prone to genetic rearrangement, because it contains numerous Alu elements. In this study, a Japanese patient who developed deep vein thrombosis during pregnancy and exhibited low AT activity underwent SERPINC1 gene analysis using routine methods: long-range polymerase chain reaction (PCR) and real-time PCR. Sequencing using long-range PCR products revealed no pathological variants in SERPINC1 exons or exon-intron junctions, and all the identified variants were homozygous, suggesting a deletion in one SERPINC1 allele. Copy number quantification for each SERPINC1 exon using real-time PCR revealed half the number of exon 1 and 2 copies compared with controls. Moreover, a deletion region was deduced by quantifying the 5'-upstream region copy number of SERPINC1 for each constant region. Direct long-range PCR sequencing with primers for the 5'-end of each presumed deletion region revealed a large Alu-mediated deletion (∼13 kb) involving SERPINC1 exons 1 and 2. Thus, a large deletion was identified in SERPINC1 using conventional PCR methods.

19.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38655715

RESUMO

Heart function is highly dependent on mitochondria, which not only produce energy but also regulate many cellular functions. Therefore, mitochondria are important therapeutic targets in heart failure. Abcb10 is a member of the ABC transporter superfamily located in the inner mitochondrial membrane and plays an important role in haemoglobin synthesis, biliverdin transport, antioxidant stress, and stabilization of the iron transporter mitoferrin-1. However, the mechanisms underlying the impairment of mitochondrial transporters in the heart remain poorly understood. Here, we generated mice with cardiomyocyte-specific loss of Abcb10. The Abcb10 knockouts exhibited progressive worsening of cardiac fibrosis, increased cardiovascular risk markers and mitochondrial structural abnormalities, suggesting that the pathology of heart failure is related to mitochondrial dysfunction. As the mitochondrial dysfunction was observed early but mildly, other factors were considered. We then observed increased Hif1α expression, decreased NAD synthase expression, and reduced NAD+ levels, leading to lysosomal dysfunction. Analysis of ABCB10 knockdown HeLa cells revealed accumulation of Fe2+ and lipid peroxides in lysosomes, leading to ferroptosis. Lipid peroxidation was suppressed by treatment with iron chelators, suggesting that lysosomal iron accumulation is involved in ferroptosis. We also observed that Abcb10 knockout cardiomyocytes exhibited increased ROS production, iron accumulation, and lysosomal hypertrophy. Our findings suggest that Abcb10 is required for the maintenance of cardiac function and reveal a novel pathophysiology of chronic heart failure related to lysosomal function and ferroptosis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Ferroptose , Lisossomos , Mitocôndrias Cardíacas , Miócitos Cardíacos , Animais , Humanos , Camundongos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ferroptose/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Células HeLa , Ferro/metabolismo , Peroxidação de Lipídeos , Lisossomos/metabolismo , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo
20.
Bone Marrow Transplant ; 59(4): 466-472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238452

RESUMO

The "human leukocyte antigen (HLA) supertype" is a functional classification of HLA alleles, which was defined by structural features and peptide specificities, and has been reportedly associated with the clinical outcomes of viral infections and autoimmune diseases. Although the disparity in each HLA locus was reported to have no clinical significance in single-unit cord blood transplantation (sCBT), the clinical significance of the HLA supertype in sCBT remains unknown. Therefore, we retrospectively analyzed clinical data of 1603 patients who received sCBT in eight institutes in Japan between 2000 and 2017. Each HLA allele was categorized into 19 supertypes, and the prognostic effect of disparities was then assessed. An HLA-B supertype mismatch was identified as a poor prognostic factor (PFS: hazard ratio [HR] = 1.23, p = 0.00044) and was associated with a higher cumulative incidence (CI) of relapse (HR = 1.24, p = 0.013). However, an HLA-B supertype mismatch was not associated with the CI of acute and chronic graft-versus-host-disease. The multivariate analysis for relapse and PFS showed the significance of an HLA-B supertype mismatch independent of allelic mismatches, and other previously reported prognostic factors. HLA-B supertype-matched grafts should be selected in sCBT.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Doença Enxerto-Hospedeiro , Humanos , Prognóstico , Estudos Retrospectivos , Antígenos HLA , Antígenos de Histocompatibilidade , Antígenos HLA-B/genética , Recidiva , Alelos , Teste de Histocompatibilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA