RESUMO
We studied therapeutic efficacy and migration characteristics of mesenchymal stem cells isolated from the human placenta after their intracerebral (stereotactic) administration to rats with the experimental ischemic stroke. It was shown that cell therapy significantly improved animal survival rate and reduced the severity of neurological deficit. New data on the migration pathways of transplanted cells in the brain were obtained.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Gravidez , Feminino , Ratos , Humanos , Animais , AVC Isquêmico/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Encéfalo , Células-Tronco Mesenquimais/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismoRESUMO
Impact of insect pests makes a significant limitation of the sugar beet crop yield. Integration of cry-genes of Bacillus thuringiensis into plant genome is one of the promising strategies to ensure plant resistance. The aim of this work was to obtain sugar beet lines (based on the MM 1/2 line) transformed with cry2A and cry1Cgenes. We have optimized transformation protocol and direct plant let regeneration protocol from leaf explants using 1 mg/l benzylaminopurine as well as 0,25 mg/l benzylaminopurine and 0,1 mg/l indole-butyric acid. Consequently, transgenic sugar beet lines transformed with vector constructs pRD400-cry1C and pRD400-cry2A have been obtained. PCR analysis revealed integration of cry2A and cry1C into genome of transgenic lines and expression of these genes in leaf tissues was shown by reverse transcription PCR.