Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 38(22): 5119-5120, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36130273

RESUMO

MOTIVATION: Confident deconvolution of proteomic spectra is critical for several applications such as de novo sequencing, cross-linking mass spectrometry and handling chimeric mass spectra. RESULTS: In general, all deconvolution algorithms may eventually report mass peaks that are not compatible with the chemical formula of any peptide. We show how to remove these artifacts by considering their mass defects. We introduce Y.A.D.A. 3.0, a fast deconvolution algorithm that can remove peaks with unacceptable mass defects. Our approach is effective for polypeptides with less than 10 kDa, and its essence can be easily incorporated into any deconvolution algorithm. AVAILABILITY AND IMPLEMENTATION: Y.A.D.A. 3.0 is freely available for academic use at http://patternlabforproteomics.org/yada3. SUPPLEMENTARY INFORMATION: Supplementary information is available at Bioinformatics online.


Assuntos
Algoritmos , Proteômica , Peptídeos , Espectrometria de Massas/métodos , Software
2.
Bioinformatics ; 37(18): 3035-3037, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33681984

RESUMO

MOTIVATION: Chemical cross-linking coupled to mass spectrometry (XLMS) emerged as a powerful technique for studying protein structures and large-scale protein-protein interactions. Nonetheless, XLMS lacks software tailored toward dealing with multiple conformers; this scenario can lead to high-quality identifications that are mutually exclusive. This limitation hampers the applicability of XLMS in structural experiments of dynamic protein systems, where less abundant conformers of the target protein are expected in the sample. RESULTS: We present QUIN-XL, a software that uses unsupervised clustering to group cross-link identifications by their quantitative profile across multiple samples. QUIN-XL highlights regions of the protein or system presenting changes in its conformation when comparing different biological conditions. We demonstrate our software's usefulness by revisiting the HSP90 protein, comparing three of its different conformers. QUIN-XL's clusters correlate directly to known protein 3D structures of the conformers and therefore validates our software. AVAILABILITYAND IMPLEMENTATION: QUIN-XL and a user tutorial are freely available at http://patternlabforproteomics.org/quinxl for academic users. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas , Software , Espectrometria de Massas , Conformação Proteica , Reagentes de Ligações Cruzadas/química
3.
Bioinformatics ; 35(18): 3489-3490, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30715205

RESUMO

MOTIVATION: We present the first tool for unbiased quality control of top-down proteomics datasets. Our tool can select high-quality top-down proteomics spectra, serve as a gateway for building top-down spectral libraries and, ultimately, improve identification rates. RESULTS: We demonstrate that a twofold rate increase for two E. coli top-down proteomics datasets may be achievable. AVAILABILITY AND IMPLEMENTATION: http://patternlabforproteomics.org/tdgc, freely available for academic use. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteômica , Escherichia coli , Software , Espectrometria de Massas em Tandem
4.
Nat Protoc ; 17(7): 1553-1578, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411045

RESUMO

Shotgun proteomics aims to identify and quantify the thousands of proteins in complex mixtures such as cell and tissue lysates and biological fluids. This approach uses liquid chromatography coupled with tandem mass spectrometry and typically generates hundreds of thousands of mass spectra that require specialized computational environments for data analysis. PatternLab for proteomics is a unified computational environment for analyzing shotgun proteomic data. PatternLab V (PLV) is the most comprehensive and crucial update so far, the result of intensive interaction with the proteomics community over several years. All PLV modules have been optimized and its graphical user interface has been completely updated for improved user experience. Major improvements were made to all aspects of the software, ranging from boosting the number of protein identifications to faster extraction of ion chromatograms. PLV provides modules for preparing sequence databases, protein identification, statistical filtering and in-depth result browsing for both labeled and label-free quantitation. The PepExplorer module can even pinpoint de novo sequenced peptides not already present in the database. PLV is of broad applicability and therefore suitable for challenging experimental setups, such as time-course experiments and data handling from unsequenced organisms. PLV interfaces with widely adopted software and community initiatives, e.g., Comet, Skyline, PEAKS and PRIDE. It is freely available at http://www.patternlabforproteomics.org .


Assuntos
Proteômica , Software , Bases de Dados de Proteínas , Proteínas/química , Proteômica/métodos , Espectrometria de Massas em Tandem
5.
J Proteomics ; 245: 104282, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34089898

RESUMO

In proteomics, the identification of peptides from mass spectral data can be mathematically described as the partitioning of mass spectra into clusters (i.e., groups of spectra derived from the same peptide). The way partitions are validated is just as important, having evolved side by side with the clustering algorithms themselves and given rise to many partition assessment measures. An assessment measure is said to have a selection bias if, and only if, the probability that a randomly chosen partition scoring a high value depends on the number of clusters in the partition. In the context of clustering mass spectra, this might mislead the validation process to favor clustering algorithms that generate too many (or few) spectral clusters, regardless of the underlying peptide sequence. A selection bias toward the number of peptides is desirable for proteomics as it estimates the number of peptides in a complex protein mixture. Here, we introduce an assessment measure that is purposely biased toward the number of peptide ion species. We also introduce a partition assessment framework for proteomics, called the Partition Assessment Tool, and demonstrate its importance by evaluating the performance of eight clustering algorithms on seven proteomics datasets while discussing the trade-offs involved. SIGNIFICANCE: Clustering algorithms are widely adopted in proteomics for undertaking several tasks such as speeding up search engines, generating consensus mass spectra, and to aid in the classification of proteomic profiles. Choosing which algorithm is most fit for the task at hand is not simple as each algorithm has advantages and disadvantages; furthermore, specifying clustering parameters is also a necessary and fundamental step. For example, deciding on whether to generate "pure clusters" or fewer clusters but accepting noise. With this as motivation, we verify the performance of several widely adopted algorithms on proteomic datasets and introduce a theoretical framework for drawing conclusions on which approach is suitable for the task at hand.


Assuntos
Proteômica , Software , Algoritmos , Análise por Conglomerados , Bases de Dados de Proteínas , Viés de Seleção , Espectrometria de Massas em Tandem
6.
J Proteomics ; 225: 103864, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526479

RESUMO

We present RawVegetable, a software for mass spectrometry data assessment and quality control tailored toward shotgun proteomics and cross-linking experiments. RawVegetable provides four main modules with distinct features: (A) The charge state chromatogram that independently displays the ion current for each charge state; useful for optimizing the chromatography for highly charged ions and with lower XIC values such as those typically found in cross-linking experiments. (B) The XL-Artefact determination, which flags possible noncovalently associated peptides. (C) The TopN density estimation, for detecting retention time intervals of under or over-sampling, and (D) The chromatography reproducibility module, which provides pairwise comparisons between multiple experiments. RawVegetable, a tutorial, and the example data are freely available for academic use at: http://patternlabforproteomics.org/rawvegetable. SIGNIFICANCE: Chromatography optimization is a critical step for any shotgun proteomic or cross-linking mass spectrometry experiment. Here, we present a nifty solution with several key features, such as displaying individual charge state chromatograms, highlighting chromatographic regions of under- or over-sampling and checking for reproducibility.


Assuntos
Proteômica , Software , Espectrometria de Massas , Peptídeos , Reprodutibilidade dos Testes
7.
J Proteomics ; 222: 103803, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32387712

RESUMO

We present the Mixed-Data Acquisition (MDA) strategy for mass spectrometry data acquisition. MDA combines Data-Dependent Acquisition (DDA) and Data-Independent Acquisition (DIA) in the same run, thus doing away with the requirements for separate DDA spectral libraries. MDA is a natural result from advances in mass spectrometry, such as high scan rates and multiple analyzers, and is tailored toward exploiting these features. We demonstrate MDA's effectiveness on a yeast proteome analysis by overcoming a common bottleneck for XIC-based label-free quantitation; namely, the coelution of precursors when m/z values cannot be distinguished. We anticipate that MDA will become the next mainstream data generation approach for proteomics. MDA can also serve as an orthogonal validation approach for DDA experiments. Specialized software for MDA data analysis is made available on the project's website.


Assuntos
Proteoma , Proteômica , Espectrometria de Massas , Software
8.
J Proteomics ; 202: 103371, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31034900

RESUMO

We present a new module integrated into the widely adopted PatternLab for proteomics to enable analysis of isotope-labeled peptides produced using dimethyl or SILAC. The accurate quantitation of proteins lies within the heart of proteomics; dimethylation has shown to be reliable, inexpensive, and applicable to any sample type. We validate our algorithm using an M. tuberculosis dataset obtained from two biological conditions; we used three dimethyl labels, one serving as an internal control for labeling a mixture of samples from both biological conditions. This internal control certified the proper functioning of our software. Availability: http://patternlabforproteomics.org, freely available for academic use.


Assuntos
Algoritmos , Proteínas de Bactérias/metabolismo , Bases de Dados de Proteínas , Marcação por Isótopo , Mycobacterium tuberculosis/metabolismo , Peptídeos/química , Proteômica/normas , Proteínas de Bactérias/química , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA