Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36433269

RESUMO

Modern optoelectronic devices use the advantage of digital systems for data processing aimed at delivering reliable information. However, since commonly used DACs have limited accuracy, some artefacts can be observed in data streams, especially in systems designed for continuous, long-term process monitoring. In this paper, the authors' experience with data enhancement using a fibre-optic rotational seismograph (FORS) operating in a closed-loop mode is presented and discussed. Generally, two kinds of enhancement are described. The first one uses suitable filtering techniques adequate for FORS noise investigation, as well as a suitable data resampling method for transmitted data file size reduction. The second one relates to the artefacts observed during data recording in real time. The recording starting point is triggered when the detected signal exceeds a middle signal level and, therefore, the existence of artefacts generally disturbs the recording process. Although the artefacts are easily recognised by human eyes even at first sight, their automatic elimination is not so easy. In this paper, the authors propose a new concept of signal filtering to solve the above problem.


Assuntos
Tecnologia de Fibra Óptica , Processamento de Sinais Assistido por Computador , Humanos , Artefatos
2.
Sensors (Basel) ; 22(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36433497

RESUMO

The paper presents historical perspective of fibre-optic seismographs designed and constructed at the Institute of Applied Physics at Military University of Technology, Poland based on the so-called minimum configuration of fibre-optic gyroscope. The briefly presented history, which originated in the 1998 by the system named GS-13P, laid solid foundations for the construction of a three-axis fibre-optic seismograph. The presented system meets all technical requirements of rotational seismology in terms of measurement parameters (measuring range from 10-8 rad/s to several rad/s and frequency from 0.01 Hz to 100 Hz) and utility features (mobility, autonomy, power independence, environmental stability). The presented device provides universal application both for research in engineering applications (high buildings, chimneys, wind towers) as well as in seismological research.

3.
Sensors (Basel) ; 21(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203898

RESUMO

Digging two vertical shafts with the multiple blasts technique gave the opportunity to measure the induced angular motions in a horizontal plane with well-defined positions of sources. Three kinds of rotation rate sensors, sharing an underground location, were used. Two of them-a Fiber-Optic System for Rotational Events & phenomena Monitoring (FOSREM) and a prototypical seismometer housing the liquid-filled torus-sensed the rotation, while a microarray of two double-pendulum seismometers sensed both the rotation and symmetric strain. The FOSREM was sampled at 656.168 Hz, while all the others were only sampled at 100 Hz. There were considerable differences within the results gathered from the mining blasts, which should be attributed to two causes. The first one is the difference in principles of the operation and sampling rates of the devices used, while the other is the complex and spatially variable character of the studied wave fields. Additionally, we established that the liquid-filled sensor, due to its relatively low sensitivity, proved to be viable only during a registration of strong ground motions. Overall, a comparative study of three different rotational seismometers was performed during mining-induced strong ground motions with well-localized sources.


Assuntos
Rotação
4.
Sensors (Basel) ; 21(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401539

RESUMO

Interest in measuring displacement gradients, such as rotation and strain, is growing in many areas of geophysical research. This results in an urgent demand for reliable and field-deployable instruments measuring these quantities. In order to further establish a high-quality standard for rotation and strain measurements in seismology, we organized a comparative sensor test experiment that took place in November 2019 at the Geophysical Observatory of the Ludwig-Maximilians University Munich in Fürstenfeldbruck, Germany. More than 24 different sensors, including three-component and single-component broadband rotational seismometers, six-component strong-motion sensors and Rotaphone systems, as well as the large ring laser gyroscopes ROMY and a Distributed Acoustic Sensing system, were involved in addition to 14 classical broadband seismometers and a 160 channel, 4.5 Hz geophone chain. The experiment consisted of two parts: during the first part, the sensors were co-located in a huddle test recording self-noise and signals from small, nearby explosions. In a second part, the sensors were distributed into the field in various array configurations recording seismic signals that were generated by small amounts of explosive and a Vibroseis truck. This paper presents details on the experimental setup and a first sensor performance comparison focusing on sensor self-noise, signal-to-noise ratios, and waveform similarities for the rotation rate sensors. Most of the sensors show a high level of coherency and waveform similarity within a narrow frequency range between 10 Hz and 20 Hz for recordings from a nearby explosion signal. Sensor as well as experiment design are critically accessed revealing the great need for reliable reference sensors.

5.
Sensors (Basel) ; 20(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121193

RESUMO

Measurements of artificial events can substantially confirm the data validity of constructed rotational sensors, as well as provide methods for simplifying the measurement process. The above task, especially with international cooperation, can provide full-field measurement results of the target object, which can deliver more significant data and sensor properties. The paper presents vertical rotational velocity recordings gathered during an international experiment that took place at the Geophysical Observatory of the Ludwig Maximilian University of Munich in Fürstenfeldbruck, Germany. Data were obtained during artificial explosions, as well as external excitations induced by a VibroSeis truck. The authors present data recorded by two prototypes of optical fiber rotational sensors. They have been specially designed for rotational seismology needs and are characterized by a theoretical sensitivity equal to 2 × 10-8 rad/s/√Hz and a wide measuring range both in amplitude even up to 10 rad/s, and a frequency from DC to 1000 Hz. Their self-noise investigation during the aforementioned experiment showed that both sensors have precision no worse than 2 × 10-6 rad/s/sqrt (Hz) in all desired frequency range from 0.01 to 100 Hz. A down-sampling and a spectral analysis of the recorded signals are also presented. The recorded data and their analysis confirmed the performance and reliability of the applied optical fiber rotational sensors. Moreover, the presented international experiment underlines a special necessity for specifying the sensors' performance test methodologies in the rotational seismology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA