Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 327(4): C1051-C1072, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39129489

RESUMO

In avascular wound repair, calcium signaling events are the predominant mechanism cells use to transduce information about stressors in the environment into an effective and coordinated migratory response. Live cell imaging and computational analysis of corneal epithelial wound healing revealed that signal initiation and propagation at the wound edge are highly ordered, with groups of cells engaging in cyclical patterns of initiation and propagation. The cells in these groups exhibit a diverse range of signaling behavior, and dominant "conductor cells" drive activity in groups of lower-signaling neighbors. Ex vivo model systems reveal that conductor cells are present in wing cell layers of the corneal epithelium and that signaling propagates both within and between wing and basal layers. There are significant aberrations in conductor phenotype and interlayer propagation in type II diabetic murine models, indicating that signal hierarchy breakdown is an early indicator of disease. In vitro models reveal that signaling profile diversity and conductor cell phenotype is eliminated with P2X7 inhibition and is altered in Pannexin-1 or P2Y2 but not Connexin-43 inhibition. Conductor cells express significantly less P2X7 than their lower-signaling neighbors and exhibit significantly less migratory behavior after injury. Together, our results show that the postinjury calcium signaling cascade exhibits significantly more ordered and hierarchical behavior than previously thought, that proteins previously shown to be essential for regulating motility are also essential for determining signaling phenotype, and that loss of signal hierarchy integrity is an early indicator of disease state. NEW & NOTEWORTHY Calcium signaling in corneal epithelial cells after injury is highly ordered, with groups of cells engaged in cyclical patterns of event initiation and propagation driven by high-signaling cells. Signaling behavior is determined by P2X7, Pannexin-1, and P2Y2 and influences migratory behavior. Signal hierarchy is observed in healthy ex vivo models after injury and becomes aberrant in diabetes. This represents a paradigm shift, as signaling was thought to be random and determined by factors in the environment.


Assuntos
Sinalização do Cálcio , Movimento Celular , Cicatrização , Animais , Camundongos , Conexinas/metabolismo , Conexinas/genética , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Conexina 43/metabolismo , Conexina 43/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Camundongos Endogâmicos C57BL , Masculino , Cálcio/metabolismo
2.
Cells ; 13(1)2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201230

RESUMO

The corneal epithelium is an avascular structure that has a unique wound healing mechanism, which allows for rapid wound closure without compromising vision. This wound healing mechanism is attenuated in diabetic patients, resulting in poor clinical outcomes and recurrent non-healing erosion. We investigated changes in cellular calcium signaling activity during the wound response in murine diabetic tissue using live cell imaging from both ex vivo and in vitro models. The calcium signaling propagation in diabetic cells was significantly decreased and displayed altered patterns compared to non-diabetic controls. Diabetic cells and tissue display distinct expression of the purinergic receptor, P2X7, which mediates the wound healing response. We speculate that alterations in P2X7 expression, interactions with other proteins, and calcium signaling activity significantly impact the wound healing response. This may explain aberrations in the diabetic wound response.


Assuntos
Diabetes Mellitus , Epitélio Corneano , Humanos , Animais , Camundongos , Sinalização do Cálcio , Reprodução , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA