Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 29(5): 1782-1793, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33348052

RESUMO

Oncolytic viruses induce antitumor immunity following direct viral oncolysis. However, their therapeutic effects are limited in distant untreated tumors because their antitumor function depends on indirect antitumor immunity. Here, we generated a novel fusogenic oncolytic vaccinia virus (FUVAC) and compared its antitumor activity with that of its parental non-fusogenic virus. Compared with the parent, FUVAC exerted the cytopathic effect and induced immunogenic cell death in human and murine cancer cells more efficiently. In a bilateral tumor-bearing syngeneic mouse model, FUVAC administration significantly inhibited tumor growth in both treated and untreated tumors. However, its antitumor effects were completely suppressed by CD8+ T cell depletion. Notably, FUVAC reduced the number of tumor-associated immune-suppressive cells in treated tumors, but not in untreated tumors. Mice treated with FUVAC before an immune checkpoint inhibitor (ICI) treatment achieved complete response (CR) in both treated and untreated tumors, whereas ICI alone did not show antitumor activity. Mice achieving CR rejected rechallenge with the same tumor cells, suggesting establishment of a long-term tumor-specific immune memory. Thus, FUVAC improves the tumor immune microenvironment and enhances systemic antitumor immunity, suggesting that, alone and in combination with ICI, it is a novel immune modulator for overcoming oncolytic virus-resistant tumors.


Assuntos
Neoplasias do Colo/terapia , Inibidores de Checkpoint Imunológico/administração & dosagem , Vaccinia virus/fisiologia , Células A549 , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Terapia Combinada , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Mutação , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Microambiente Tumoral/efeitos dos fármacos , Vaccinia virus/genética , Internalização do Vírus , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cells ; 10(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922406

RESUMO

Engineered vaccinia virus serves as an oncolytic virus for cancer virotherapy. We evaluated the oncolytic characteristics of VGF- and O1-deleted recombinant mitogen-activated protein kinase (MAPK)-dependent vaccinia virus (MDRVV). We found that compared with viruses with the deletion of either gene alone, MDRVV is more attenuated in normal cells and can replicate in cancer cells that exhibit constitutive ERK1/2 activation in the MAPK pathway. We armed MDRVV with a bifunctional fusion gene encoding cytosine deaminase and uracil phosphoribosyltransferase (CD/UPRT), which converts 5-fluorocytosine (5-FC) into chemotherapeutic agents, and evaluated its oncolytic activity alone or in combination with 5-FC in human pancreatic cancer cell lines, tumor mouse models of peritoneal dissemination and liver metastasis, and ex vivo-infected live pancreatic cancer patient-derived tissues. CD/UPRT-armed MDRVV alone could efficiently eliminate pancreatic cancers, and its antitumor effects were partially enhanced in combination with 5-FC in vitro and in vivo. Moreover, the replication of MDRVV was detected in tumor cells of patient-derived, surgically resected tissues, which showed enlarged nuclei and high expression of pERK1/2 and Ki-67, and not in stromal cells. Our findings suggest that systemic injections of CD/UPRT-armed MDRVV alone or in combination with 5-FC are promising therapeutic strategies for pancreatic ductal adenocarcinoma.


Assuntos
Citosina Desaminase/metabolismo , Flucitosina/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Pentosiltransferases/metabolismo , Vaccinia virus/genética , Animais , Apoptose , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Proliferação de Células , Terapia Combinada , Citosina Desaminase/genética , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Camundongos , Camundongos SCID , Proteínas Quinases Ativadas por Mitógeno/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pentosiltransferases/genética , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/terapia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Ther Oncolytics ; 14: 159-171, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31236440

RESUMO

Vaccinia virus (VV) has been utilized in oncolytic virotherapy, but it risks a host antiviral immune response. VV has an extracellular enveloped virus (EEV) form consisting of a normal virion covered with a host-derived outer membrane that enables its spread via circulation while evading host immune mechanisms. However, the immune resistance of EEV is only partial, owing to expression of the surface protein B5R, which has four short consensus repeat (SCR) domains that are targeted by host immune factors. To engineer a more effective virus for oncolytic virotherapy, we developed an enhanced immune-evading oncolytic VV by removing the SCRs from the attenuated strain LC16mO. Although deletion of only the SCRs preserved viral replication, progeny production, and oncolytic activity, deletion of whole B5R led to attenuation of the virus. Importantly, SCR-deleted EEV had higher neutralization resistance than did B5R-wild-type EEV against VV-immunized animal serum; moreover, it retained oncolytic function, thereby prolonging the survival of tumor-bearing mice treated with anti-VV antibody. These results demonstrate that partial SCR deletion increases neutralization escape without affecting the oncolytic potency of VV, making it useful for the treatment of tumors under the anti-virus antibody existence.

4.
Mol Ther Oncolytics ; 13: 35-48, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31011626

RESUMO

Oncolytic vaccinia virus (OVV) has demonstrated appropriate safety profiles for clinical development. Although designed to kill cancer cells efficiently, OVV sensitivity varies in individual cancers, and predictive biomarkers of therapeutic responses have not been identified. Here we found that OVV was much more efficient in KFTX paclitaxel-resistant ovarian cancer cells compared to that in KFlow paclitaxel-sensitive cells. Microarray analysis identified long non-coding RNA urothelial carcinoma-associated 1 (UCA1) upregulation, which contributed to both enhanced paclitaxel resistance and OVV spread. In addition, UCA1 expression correlated with efficient OVV spread in other ovarian cell lines and primary cancer cell cultures. When host pathways underlying OVV spread were analyzed, differences were detected in the activation of the Rho GTPase Cdc42, suggesting that filopodia formation enhances OVV cell-to-cell spread and tumor migration. Moreover, we established a clinically relevant mouse model of peritoneal metastasis using KFTX or KFlow cells. Paclitaxel exerted anti-tumor effects on KFlow, but not KFTX, tumors. In mice bearing KFTX cells after paclitaxel failure, OVV treatment induced the regression of residual tumors and improved survival. Our findings demonstrated that UCA1 promotes OVV cell-to-cell spread in ovarian cancer, resulting in enhanced therapeutic outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA