Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Hum Mutat ; 43(12): 2063-2078, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125428

RESUMO

Pseudouridine (Ψ) is an RNA base modification ubiquitously found in many types of RNAs. In humans, the isomerization of uridine is catalyzed by different stand-alone pseudouridine synthases (PUS). Genomic mutations in the human pseudouridine synthase 3 gene (PUS3) have been identified in patients with neurodevelopmental disorders. However, the underlying molecular mechanisms that cause the disease phenotypes remain elusive. Here, we utilize exome sequencing to identify genomic variants that lead to a homozygous amino acid substitution (p.[(Tyr71Cys)];[(Tyr71Cys)]) in human PUS3 of two affected individuals and a compound heterozygous substitution (p.[(Tyr71Cys)];[(Ile299Thr)]) in a third patient. We obtain wild-type and mutated full-length human recombinant PUS3 proteins and characterize the enzymatic activity in vitro. Unexpectedly, we find that the p.Tyr71Cys substitution neither affect tRNA binding nor pseudouridylation activity in vitro, but strongly impair the thermostability profile of PUS3, while the p.Ile299Thr mutation causes protein aggregation. Concomitantly, we observe that the PUS3 protein levels as well as the level of PUS3-dependent Ψ levels are strongly reduced in fibroblasts derived from all three patients. In summary, our results directly illustrate the link between the identified PUS3 variants and reduced Ψ levels in the patient cells, providing a molecular explanation for the observed clinical phenotypes.


Assuntos
Hidroliases , Deficiência Intelectual , Pseudouridina , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Deficiência Intelectual/genética , Pseudouridina/genética , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA
2.
EMBO Rep ; 21(8): e48882, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32558077

RESUMO

Synapses are the regions of the neuron that enable the transmission and propagation of action potentials on the cost of high energy consumption and elevated demand for mitochondrial ATP production. The rapid changes in local energetic requirements at dendritic spines imply the role of mitochondria in the maintenance of their homeostasis. Using global proteomic analysis supported with complementary experimental approaches, we show that an essential pool of mitochondrial proteins is locally produced at the synapse indicating that mitochondrial protein biogenesis takes place locally to maintain functional mitochondria in axons and dendrites. Furthermore, we show that stimulation of synaptoneurosomes induces the local synthesis of mitochondrial proteins that are transported to the mitochondria and incorporated into the protein supercomplexes of the respiratory chain. Importantly, in a mouse model of fragile X syndrome, Fmr1 KO mice, a common disease associated with dysregulation of synaptic protein synthesis, we observed altered morphology and respiration rates of synaptic mitochondria. That indicates that the local production of mitochondrial proteins plays an essential role in synaptic functions.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Animais , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteômica , Sinapses
3.
Proc Natl Acad Sci U S A ; 115(25): E5805-E5814, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29880715

RESUMO

Experience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation. Among an array of putative activity-dependent translational neuronal targets tested, we identified one candidate, a schizophrenia-associated candidate mRNA, neurogranin (Ng, encoded by the Nrgn gene) responding to novel-context exposure. The Ng mRNA was recruited to the actively translating mRNA pool upon novel-context exposure, and its protein levels were rapidly increased in the hippocampus. By specifically blocking activity-dependent translation of Ng using virus-mediated molecular perturbation, we show that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. We further interrogated the molecular mechanism underlying the experience-dependent translation of Ng, and found that fragile-X mental retardation protein (FMRP) interacts with the 3'UTR of the Nrgn mRNA and is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Our results reveal that FMRP-mediated, experience-dependent, rapid enhancement of Ng translation in the hippocampus during the memory acquisition enables durable context memory encoding.


Assuntos
Memória/fisiologia , Neurogranina/metabolismo , Biossíntese de Proteínas/fisiologia , Animais , Medo/fisiologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , RNA Mensageiro/metabolismo
4.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38106209

RESUMO

Synaptic plasticity underlies learning and memory processes as well as contributes, in its aberrant form, to neuropsychiatric disorders. One of its major forms is structural long-term potentiation (sLTP), an activity-dependent growth of dendritic spines that harbor excitatory synapses. The process depends on the release of brain-derived neurotrophic factor (BDNF), and activation of its receptor, TrkB. Matrix metalloproteinase-9 (MMP-9), an extracellular protease is essential for many forms of neuronal plasticity engaged in physiological as well as pathological processes. Here, we utilized two-photon microscopy and two-photon glutamate uncaging to demonstrate that MMP-9 activity is essential for sLTP and is rapidly (~seconds) released from dendritic spines in response to synaptic stimulation. Moreover, we show that either chemical or genetic inhibition of MMP-9 impairs TrkB activation, as measured by fluorescence lifetime imaging microscopy of FRET sensor. Furthermore, we provide evidence for a cell-free cleavage of proBDNF into mature BDNF by MMP-9. Our findings point to the autocrine mechanism of action of MMP-9 through BDNF maturation and TrkB activation during sLTP.

5.
Mol Biol Cell ; 35(3): ar43, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294869

RESUMO

Synaptic plasticity is a process that shapes neuronal connections during neurodevelopment and learning and memory. Autophagy is a mechanism that allows the cell to degrade its unnecessary or dysfunctional components. Autophagosomes appear at dendritic spines in response to plasticity-inducing stimuli. Autophagy defects contribute to altered dendritic spine development, autistic-like behavior in mice, and neurological disease. While several studies have explored the involvement of autophagy in synaptic plasticity, the initial steps of the emergence of autophagosomes at the postsynapse remain unknown. Here, we demonstrate a postsynaptic association of autophagy-related protein 9A (Atg9A), known to be involved in the early stages of autophagosome formation, with Rab11, a small GTPase that regulates endosomal trafficking. Rab11 activity was necessary to maintain Atg9A-positive structures at dendritic spines. Inhibition of mTOR increased Rab11 and Atg9A interaction and increased the emergence of LC3 positive vesicles, an autophagosome membrane-associated protein marker, in dendritic spines when coupled to NMDA receptor stimulation. Dendritic spines with newly formed LC3+ vesicles were more resistant to NMDA-induced morphologic change. Rab11 DN overexpression suppressed appearance of LC3+ vesicles. Collectively, these results suggest that initiation of autophagy in dendritic spines depends on neuronal activity and Rab11a-dependent Atg9A interaction that is regulated by mTOR activity.


Assuntos
Espinhas Dendríticas , N-Metilaspartato , Animais , Camundongos , Autofagossomos/metabolismo , Autofagia , Espinhas Dendríticas/metabolismo , N-Metilaspartato/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Front Mol Neurosci ; 16: 1258615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025260

RESUMO

Fragile X syndrome (FXS) is the most common monogenetic cause of inherited intellectual disability and autism in humans. One of the well-characterized molecular phenotypes of Fmr1 KO mice, a model of FXS, is increased translation of synaptic proteins. Although this upregulation stabilizes in adulthood, abnormalities during the critical period of plasticity have long-term effects on circuit formation and synaptic properties. Using high-resolution quantitative proteomics of synaptoneurosomes isolated from the adult, developed brains of Fmr1 KO mice, we show a differential abundance of proteins regulating the postsynaptic receptor activity of glutamatergic synapses. We investigated the AMPA receptor composition and shuttling in adult Fmr1 KO and WT mice using a variety of complementary experimental strategies such as surface protein crosslinking, immunostaining of surface receptors, and electrophysiology. We discovered that the activity-dependent synaptic delivery of AMPARs is impaired in adult Fmr1 KO mice. Furthermore, we show that Fmr1 KO synaptic AMPARs contain more GluA2 subunits that can be interpreted as a switch in the synaptic AMPAR subtype toward an increased number of Ca2+-impermeable receptors in adult Fmr1 KO synapses.

7.
Front Mol Neurosci ; 15: 924534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992198

RESUMO

As microRNAs have emerged to be important regulators of molecular events occurring at the synapses, the new questions about their regulatory effect on the behavior have araised. In the present study, we show for the first time that the dysregulated specific targeting of miR132 to Mmp9 mRNA in the mouse brain results in the increased level of Mmp9 protein, which affects synaptic plasticity and has an effect on memory formation. Our data points at the importance of complex and precise regulation of the Mmp9 level by miR132 in the brain.

8.
Mol Neurobiol ; 56(4): 2741-2759, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30056576

RESUMO

Neuroligins (NLGNs) are cell adhesion molecules located on the postsynaptic side of the synapse that interact with their presynaptic partners neurexins to maintain trans-synaptic connection. Fragile X syndrome (FXS) is a common neurodevelopmental disease that often co-occurs with autism and is caused by the lack of fragile X mental retardation protein (FMRP) expression. To gain an insight into the molecular interactions between the autism-related genes, we sought to determine whether FMRP controls the synaptic levels of NLGNs. We show evidences that FMRP associates with Nlgn1, Nlgn2, and Nlgn3 mRNAs in vitro in both synaptoneurosomes and neuronal cultures. Next, we confirm local translation of Nlgn1, Nlgn2, and Nlgn3 mRNAs to be synaptically regulated by FMRP. As a consequence of elevated Nlgns mRNA translation Fmr1 KO mice exhibit increased incorporation of NLGN1 and NLGN3 into the postsynaptic membrane. Finally, we show that neuroligins synaptic level is precisely and dynamically regulated by their rapid proteolytic cleavage upon NMDA receptor stimulation in both wild type and Fmr1 KO mice. In aggregate, our study provides a novel approach to understand the molecular basis of FXS by linking the dysregulated synaptic expression of NLGNs with FMRP.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Biossíntese de Proteínas , Proteólise , Sinapses/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Membrana Celular/metabolismo , Células Cultivadas , Química Click , Reagentes de Ligações Cruzadas/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos Knockout , Modelos Biológicos , Polirribossomos/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Brain Struct Funct ; 224(8): 2691-2701, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31375980

RESUMO

Serum response factor (SRF) is a major transcription factor that regulates the expression of several plasticity-associated genes in the brain. Although the developmental expression of SRF in excitatory neurons is crucial for establishing proper hippocampal circuitry, no substantial evidence of its role in unstimulated mature neurons has been provided. The present study used time-controlled, conditional SRF knockout mice and found that the lack of SRF in adult neurons led to decreased actin levels and inactivation of the actin-severing protein cofilin 1 through its increase in phosphorylation at Ser3. The augmentation of cofilin 1 phosphorylation correlated with an alteration of dendritic spine morphology in the dentate gyrus, which was reflected by an increase in the number of spines that clustered into the long-spine category. The changes in spine morphology coincided with a lower amplitude and frequency of miniature excitatory postsynaptic currents. Moreover, SRF knockout animals were hyperactive and exhibited impairments in hippocampus-dependent behaviors, such as digging, marble burying, and nesting. Altogether, our data indicate that the adult deletion of neuronal SRF leads to alterations of spine morphology and function and hippocampus-dependent behaviors. Thus, SRF deletion in adult neurons recapitulates some aspects of morphological, electrophysiological, and behavioral changes that are observed in such psychiatric disorders as schizophrenia and autism spectrum disorders.


Assuntos
Comportamento Animal/fisiologia , Espinhas Dendríticas/fisiologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Fator de Resposta Sérica/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Feminino , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal , Fator de Resposta Sérica/genética
10.
Eur J Hum Genet ; 27(1): 61-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30254215

RESUMO

PPP3CA encodes calmodulin-binding catalytic subunit of calcineurin, a ubiquitously expressed calcium/calmodulin-regulated protein phosphatase. Recently de novo PPP3CA variants were reported as a cause of disease in 12 subjects presenting with epileptic encephalopathy and dysmorphic features. We describe a boy with similar phenotype and severe early onset epileptic encephalopathy in whom a novel de novo c.1324C>T (p.(Gln442Ter)) PPP3CA variant was found by whole exome sequencing. Western blot experiments in patient's cells (EBV transformed lymphocytes and neuronal cells derived through reprogramming) indicate that despite normal mRNA abundance the protein expression level is strongly reduced both for the mutated and wild-type protein. By in vitro studies with recombinant protein expressed in E. coli we show that c.1324C>T (p.(Gln442Ter)) results in constitutive activation of the enzyme. Our results confirm the role of PPP3CA defects in pathogenesis of a distinct neurodevelopmental disorder including severe epilepsy and dysmorphism and provide further functional clues regarding the pathogenic mechanism.


Assuntos
Calcineurina/genética , Anormalidades Craniofaciais/genética , Epilepsia/genética , Mutação de Sentido Incorreto , Calcineurina/metabolismo , Células Cultivadas , Criança , Anormalidades Craniofaciais/patologia , Regulação para Baixo , Epilepsia/patologia , Humanos , Masculino , Fenótipo , Síndrome
11.
J Neurosci Methods ; 293: 226-233, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28993203

RESUMO

BACKGROUND: Here we describe a detailed, reliable protocol for isolation of polysomal fractions from mouse brain synaptoneurosomes. This method is an important tool to study local protein synthesis in neurons. NEW METHOD: We combined rapid preparation of synaptoneurosomes by filtration with polysome profiling. We provide a detailed protocol highlighting difficulties and critical steps of: i) preparation of synaptoneurosomes; ii) polyribosome fractionation from synaptoneurosomes; iii) extraction of proteins and RNA from sucrose gradient fractions. RESULTS: and Comparison with Existing Methods We fractionated polyribosomes from synaptoneurosomes and detected the association of Mmp9, Camk2a and Stx1B mRNA with polysomes in the unstimulated conditions. Synaptic stimulation led to increased levels of Mmp9 and Camk2a mRNA in the heavy polysomal fractions. We compared our protocol with existing methods CONCLUSIONS: We have developed a reliable, effective method to prepare polyribosomal fractions from synaptoneurosomes to study polyribosomal binding of mRNAs as an aspect of synaptic translation in vitro.


Assuntos
Córtex Cerebral/química , Hipocampo/química , Técnicas de Preparação Histocitológica , Polirribossomos/química , RNA Mensageiro/análise , Sinaptossomos/química , Animais , Western Blotting , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Dissecação , Eletroforese em Gel de Poliacrilamida , Hipocampo/metabolismo , Masculino , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sacarose/análise , Sinaptossomos/metabolismo , Sintaxina 1/análise , Sintaxina 1/metabolismo
12.
Folia Neuropathol ; 56(3): 167-174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30509037

RESUMO

Tuberous sclerosis complex (TSC) represents a genetic condition, in which the clinical manifestations are caused by the disinhibition of the mammalian target of rapamycin (mTOR) pathway due to mutations in the TSC1 (hamartin) or TSC2 (tuberin) genes. The deregulated mTOR activity leads to multi-site tumors, including subependymal giant cell astrocytoma (SEGA). SEGA is a brain tumor that affects around 15% of TSC patients. The aim of the study was to evaluate miR-21 expression in the serum of two groups of TSC patients: with or without SEGA tumors. We found no differences in the level of miR-21 depending on the presence of SEGA. Next, we studied the influence of prolonged rapamycin administration on miR-21 level in the blood serum of TSC patients (6-12 months of rapamycin) and in primary cultures of SEGA-derived cells treated with rapamycin in vitro. Here we show that rapamycin treatment leads to the upregulation of miR-21 in both patients' serum and in primary SEGA tumor cells in the culture indicating the regulatory relationship between rapamycin treatment and miR-21 expression.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , MicroRNAs/biossíntese , MicroRNAs/efeitos dos fármacos , Sirolimo/uso terapêutico , Esclerose Tuberosa/tratamento farmacológico , Adolescente , Astrocitoma/etiologia , Criança , Feminino , Humanos , Masculino , Esclerose Tuberosa/complicações , Esclerose Tuberosa/metabolismo , Células Tumorais Cultivadas , Regulação para Cima , Adulto Jovem
13.
Mol Neurobiol ; 53(3): 1478-1493, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25636686

RESUMO

Although the transcription factor serum response factor (SRF) has been suggested to play a role in activity-dependent gene expression and mediate plasticity-associated structural changes in the hippocampus, no unequivocal evidence has been provided for its role in brain pathology, such as epilepsy. A genome-wide program of activity-induced genes that are regulated by SRF also remains unknown. In the present study, we show that the inducible and conditional deletion of SRF in the adult mouse hippocampus increases the epileptic phenotype in the kainic acid model of epilepsy, reflected by more severe and frequent seizures. Moreover, we observe a robust decrease in activity-induced gene transcription in SRF knockout mice. We characterize the genetic program controlled by SRF in neurons and using functional annotation, we find that SRF target genes are associated with synaptic plasticity and epilepsy. Several of these SRF targets function as regulators of inhibitory or excitatory balance and the structural plasticity of neurons. Interestingly, mutations in those SRF targets have found to be associated with such human neuropsychiatric disorders, as autism and intellectual disability. We also identify novel direct SRF targets in hippocampus: Npas4, Gadd45g, and Zfp36. Altogether, our data indicate that proteins that are highly upregulated by neuronal stimulation, identified in the present study as SRF targets, may function as endogenous protectors against overactivation. Thus, the lack of these effector proteins in SRF knockout animals may lead to uncontrolled excitation and eventually epilepsy.


Assuntos
Epilepsia/genética , Fator de Resposta Sérica/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ácido Caínico/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Neurônios/metabolismo , Fator de Resposta Sérica/deficiência , Fator de Resposta Sérica/genética , Tristetraprolina/biossíntese , Tristetraprolina/genética , Proteínas GADD45
14.
Mol Cell Biol ; 33(11): 2149-62, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23508111

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a pivotal role in the regulation of the transcription of genes that encode proplasticity proteins. In the present study, we provide evidence that stimulation of rat primary cortical neurons with BDNF upregulates matrix metalloproteinase 9 (MMP-9) mRNA and protein levels and increases enzymatic activity. The BDNF-induced MMP-9 transcription was dependent on extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and c-Fos expression. Overexpression of AP-1 dimers in neurons led to MMP-9 promoter activation, with the most potent being those that contained c-Fos, whereas knockdown of endogenous c-Fos by small hairpin RNA (shRNA) reduced BDNF-mediated MMP-9 transcription. Additionally, mutation of the proximal AP-1 binding site in the MMP-9 promoter inhibited the activation of MMP-9 transcription. BDNF stimulation of neurons induced binding of endogenous c-Fos to the proximal MMP-9 promoter region. Furthermore, as the c-Fos gene is a known target of serum response factor (SRF), we investigated whether SRF contributes to MMP-9 transcription. Inhibition of SRF and its cofactors by either overexpression of dominant negative mutants or shRNA decreased MMP-9 promoter activation. In contrast, MMP-9 transcription was not dependent on CREB activity. Finally, we showed that neuronal activity stimulates MMP-9 transcription in a tyrosine kinase receptor B (TrkB)-dependent manner.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metaloproteinase 9 da Matriz/genética , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Resposta Sérica/metabolismo , Animais , Sequência de Bases , Bicuculina/farmacologia , Sítios de Ligação , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
15.
Int J Biochem Cell Biol ; 44(9): 1444-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22626970

RESUMO

Serum response factor (SRF) is a major transcription factor that regulates activity-driven gene expression in neurons. Activation of SRF-driven transcription occurs through its interaction with two families of co-factors: ternary complex factor (TCF) and myocardin-related transcription factors (MRTFs). This review focuses on the MRTF family members MKL1 (MAL/MRTF-A/BSAC) and MKL2 (MRTF-B/MAL16). MKLs share several high-homology domains but a low level of sequence identity in the transactivation domain. Both co-activators are expressed in the brain and regulate SRF-dependent gene expression. MKL1 and MKL2 function as major co-activators of SRF function in the developing mouse brain. MKLs inactivation causes ineffective neuronal migration and aberrant neurite outgrowth during development. Moreover, inhibition of MKL1 or MKL2 by short-hairpin RNAs results in a decreased number of dendritic processes and dendritic length. Altogether, MKLs appear to regulate plasticity-related structural changes in neurons.


Assuntos
Neurônios/metabolismo , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Encefalopatias/metabolismo , Encefalopatias/patologia , Regulação da Expressão Gênica , Humanos , Neurônios/patologia , Fatores de Transcrição/química
16.
J Alzheimers Dis ; 32(2): 397-415, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22810102

RESUMO

Cell cycle (CC) reentry in neurons precedes the formation of amyloid-ß (Aß) plaques in Alzheimer's disease (AD). CC alterations were also detected in lymphocytes from sporadic AD patients. In the present study, we investigated the influence of nine presenilin 1 (PS1) mutations (P117R, M139V, L153V, H163R, S170F, F177L, I213F, L226F, E318G) on CC and Aß production in immortalized B-lymphocytes from familial AD (FAD) patients and in stably transfected human embryonic kidney cells. In both cell types, only the P117R mutation increased levels of key G1/S phase regulatory proteins, p53, and its effector p21, causing G1 phase prolongation with simultaneous S phase shortening, and lowering basal apoptosis. The CC changes were rescued by inhibition of p53, but not of γ-secretase. Moreover, the investigated PS1 mutants showed differences in the increased levels of secreted Aß40 and Aß42 and in Aß42/Aß40 ratios, but these differences did not correlate with CC patterns. Altogether, we found that both CC regulation and Aß production differentiate PS1 mutations, and that CC PS1 activity is mediated by p53/p21 signaling but not by γ-secretase activity. The identified CC dysregulation linked with increased p53 and p21 protein levels distinguishes the highly pathogenic PS1 P117R mutation and may contribute to the specific severity of the clinical progression of FAD associated with the mutation in the PS1 117 site. These findings suggest that impairment in lymphocyte CC might play a pathogenic function in AD and are relevant to the development of new diagnostic approaches and personalized therapeutic strategies.


Assuntos
Doença de Alzheimer/genética , Linfócitos B/metabolismo , Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Presenilina-1/genética , Proteína Supressora de Tumor p53/metabolismo , Adulto , Doença de Alzheimer/metabolismo , Apoptose/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteína Supressora de Tumor p53/genética
17.
Neurobiol Aging ; 32(12): 2319.e13-26, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20541838

RESUMO

Cell cycle (CC) reactivation in neurons seems to underlie the development of Alzheimer's disease (AD). We analyzed whether CC alterations can be detected in immortalized lymphocytes from patients with the sporadic and the familial form of AD (SAD and FAD). Real-time polymerase chain reaction (PCR)-arrays, immunoblotting, and flow cytometry demonstrated differences in the regulation of G1/S phases between SAD lymphocytes and cells from nondemented subjects, as well as between SAD and FAD cells. SAD compared to FAD lymphocytes showed differences in expression profiles of the 90 CC genes, and a marked increase in the level of the p21 protein, which promotes G1-arrest. Accordingly, SAD but not FAD cells had a prolonged G1-phase. γ-secretase inhibition did not change the CC profiles of the cell lines. These data show that SAD involves a prolongation of the G1 phase driven by p21 pathway, which is not activated in FAD cells. Thus, the mechanism in SAD differs from FAD. Moreover, disturbances of the CC in lymphocytes have a potential diagnostic value.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Ciclo Celular/fisiologia , Linfócitos/patologia , Adulto , Idoso , Linhagem Celular Transformada , Proliferação de Células , Feminino , Fase G1/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fase S/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA