Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526661

RESUMO

The choroid plexus (CP) is an extensively vascularized neuroepithelial tissue that projects into the brain ventricles. The restriction of transepithelial transport across the CP establishes the blood-cerebrospinal fluid (CSF) barrier that is fundamental to the homeostatic regulation of the central nervous system microenvironment. However, the molecular mechanisms that control this process remain elusive. Here we show that the genetic ablation of Sox9 in the hindbrain CP results in a hyperpermeable blood-CSF barrier that ultimately upsets the CSF electrolyte balance and alters CSF protein composition. Mechanistically, SOX9 is required for the transcriptional up-regulation of Col9a3 in the CP epithelium. The reduction of Col9a3 expression dramatically recapitulates the blood-CSF barrier defects of Sox9 mutants. Loss of collagen IX severely disrupts the structural integrity of the epithelial basement membrane in the CP, leading to progressive loss of extracellular matrix components. Consequently, this perturbs the polarized microtubule dynamics required for correct orientation of apicobasal polarity and thereby impedes tight junction assembly in the CP epithelium. Our findings reveal a pivotal cascade of SOX9-dependent molecular events that is critical for construction of the blood-CSF barrier.


Assuntos
Sangue/metabolismo , Polaridade Celular , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/metabolismo , Colágeno Tipo IX/metabolismo , Células Epiteliais/citologia , Fatores de Transcrição SOX9/metabolismo , Animais , Membrana Basal/metabolismo , Colágeno Tipo IX/genética , Eletrólitos/líquido cefalorraquidiano , Células Epiteliais/metabolismo , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Deleção de Genes , Técnicas de Silenciamento de Genes , Camundongos Knockout , Microtúbulos/metabolismo , Junções Íntimas/metabolismo , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33947817

RESUMO

DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.


Assuntos
Apoptose/genética , Dano ao DNA , Doença de Huntington/genética , Peptídeos/genética , Pirofosfatases/genética , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Apoptose/efeitos dos fármacos , Benzamidinas/metabolismo , Benzamidinas/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Pirofosfatases/metabolismo , RNA/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Nature ; 540(7634): 579-582, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27926730

RESUMO

The Yorkie homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif, also known as WWTR1), effectors of the Hippo pathway, have been identified as mediators for mechanical stimuli. However, the role of YAP/TAZ in haemodynamics-induced mechanotransduction and pathogenesis of atherosclerosis remains unclear. Here we show that endothelial YAP/TAZ activity is regulated by different patterns of blood flow, and YAP/TAZ inhibition suppresses inflammation and retards atherogenesis. Atheroprone-disturbed flow increases whereas atheroprotective unidirectional shear stress inhibits YAP/TAZ activity. Unidirectional shear stress activates integrin and promotes integrin-Gα13 interaction, leading to RhoA inhibition and YAP phosphorylation and suppression. YAP/TAZ inhibition suppresses JNK signalling and downregulates pro-inflammatory genes expression, thereby reducing monocyte attachment and infiltration. In vivo endothelial-specific YAP overexpression exacerbates, while CRISPR/Cas9-mediated Yap knockdown in endothelium retards, plaque formation in ApoE-/- mice. We also show several existing anti-atherosclerotic agents such as statins inhibit YAP/TAZ transactivation. On the other hand, simvastatin fails to suppress constitutively active YAP/TAZ-induced pro-inflammatory gene expression in endothelial cells, indicating that YAP/TAZ inhibition could contribute to the anti-inflammatory effect of simvastatin. Furthermore, activation of integrin by oral administration of MnCl2 reduces plaque formation. Taken together, our results indicate that integrin-Gα13-RhoA-YAP pathway holds promise as a novel drug target against atherosclerosis.

4.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026307

RESUMO

Planar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of Fuz, a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous Fuz expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients. The disruption of this upregulation mitigates polyQ-induced neurodegeneration in Drosophila We show that the transcriptional regulator Yin Yang 1 (YY1) associates with the Fuz promoter. Overexpression of YY1 promotes the hypermethylation of Fuz promoter, causing transcriptional repression of Fuz Remarkably, YY1 protein is recruited to ATXN3-Q84 aggregates, which reduces the level of functional, soluble YY1, resulting in Fuz transcriptional derepression and induction of neuronal apoptosis. Furthermore, Fuz transcript level is elevated in amyloid beta-peptide, Tau and α-synuclein models, implicating its potential involvement in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Taken together, this study unveils a generic Fuz-mediated apoptotic cell death pathway in neurodegenerative disorders.


Assuntos
Apoptose , Polaridade Celular/genética , Polaridade Celular/fisiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Adulto , Idoso , Peptídeos beta-Amiloides/metabolismo , Animais , Caspase 3/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Proteínas Desgrenhadas/metabolismo , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Doenças Neurodegenerativas/induzido quimicamente , Peptídeos/farmacologia , Ratos , Fator de Transcrição YY1/genética , alfa-Sinucleína/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas tau/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(14): 3820-5, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27006501

RESUMO

The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial-mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers.


Assuntos
Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Mesoderma/embriologia , Notocorda/embriologia , Células-Tronco/fisiologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula/genética , Proliferação de Células , Embrião de Mamíferos , Desenvolvimento Embrionário , Transição Epitelial-Mesenquimal , Feminino , Camundongos , Camundongos Transgênicos , Notocorda/metabolismo , Linha Primitiva/metabolismo , Interferência de RNA , RNA Interferente Pequeno
6.
Development ; 142(11): 2069-79, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977363

RESUMO

Lhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression. LHX1 also regulates, in the anterior mesendoderm, the transcription of genes encoding negative regulators of WNT signalling, such as Dkk1, Hesx1, Cer1 and Gsc. Embryos carrying mutations in Pcdh7, generated using CRISPR-Cas9 technology, and embryos without Lhx1 function specifically in the anterior mesendoderm displayed head defects that partially phenocopied the truncation defects of Lhx1-null mutants. Therefore, disruption of Lhx1-dependent movement of the anterior mesendoderm cells and failure to modulate WNT signalling both resulted in the truncation of head structures. Compound mutants of Lhx1, Dkk1 and Ctnnb1 show an enhanced head truncation phenotype, pointing to a functional link between LHX1 transcriptional activity and the regulation of WNT signalling. Collectively, these results provide comprehensive insight into the context-specific function of LHX1 in head formation: LHX1 enables the formation of the anterior mesendoderm that is instrumental for mediating the inductive interaction with the anterior neuroectoderm and LHX1 also regulates the expression of factors in the signalling cascade that modulate the level of WNT activity.


Assuntos
Embrião de Mamíferos/metabolismo , Cabeça/embriologia , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caderinas/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos Knockout , Modelos Biológicos , Mutação , Fenótipo , Transdução de Sinais , Fatores de Transcrição/genética , Proteínas Wnt/metabolismo
7.
Mol Pharm ; 15(12): 5781-5792, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30392378

RESUMO

Polyglutamine diseases are a set of progressive neurodegenerative disorders caused by misfolding and aggregation of mutant CAG RNA and polyglutamin protein. To date, there is a lack of effective therapeutics that can counteract the polyglutamine neurotoxicity. Two peptidylic inhibitors, QBP1 and P3, targeting the protein and RNA toxicities, respectively, have been previously demonstrated by us with combinational therapeutic effects on the Drosophila polyglutamine disease model. However, their therapeutic efficacy has never been investigated in vivo in mammals. The current study aims to (a) develop a brain-targeting delivery system for both QBP1 and L1P3V8 (a lipidated variant of P3 with improved stability) and (b) evaluate their therapeutic effects on the R6/2 transgenic mouse model of polyglutamine disease. Compared with intravenous administration, intranasal administration of QBP1 significantly increased its brain-to-plasma ratio. In addition, employment of a chitosan-containing in situ gel for the intranasal administration of QBP1 notably improved its brain concentration for up to 10-fold. Further study on intranasal cotreatment with the optimized formulation of QBP1 and L1P3V8 in mice found no interference on the brain uptake of each other. Subsequent efficacy evaluation of 4-week daily QBP1 (16 µmol/kg) and L1P3V8 (6 µmol/kg) intranasal cotreatment in the R6/2 mice demonstrated a significant improvement on the motor coordination and explorative behavior of the disease mice, together with a full suppression on the RNA- and protein-toxicity markers in their brains. In summary, the current study developed an efficient intranasal cotreatment of the two peptidylic inhibitors, QBP1 and L1P3V8, for their brain-targeting, and such a novel therapeutic strategy was found to be effective on a transgenic polyglutamine disease mouse model.


Assuntos
Proteínas de Transporte/administração & dosagem , Transtornos Heredodegenerativos do Sistema Nervoso/tratamento farmacológico , Oligopeptídeos/administração & dosagem , Peptídeos/administração & dosagem , Peptídeos/metabolismo , RNA Mensageiro/antagonistas & inibidores , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Transporte/farmacocinética , Modelos Animais de Doenças , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada/métodos , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligopeptídeos/farmacocinética , Peptídeos/farmacocinética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Expansão das Repetições de Trinucleotídeos/genética
8.
Dev Biol ; 389(2): 124-36, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24560999

RESUMO

The female reproductive tract organs of mammals, including the oviducts, uterus, cervix and upper vagina, are derived from the Müllerian ducts, a pair of epithelial tubes that form within the mesonephroi. The Müllerian ducts form in a rostral to caudal manner, guided by and dependent on the Wolffian ducts that have already formed. Experimental embryological studies indicate that caudal elongation of the Müllerian duct towards the urogenital sinus occurs in part by proliferation at the ductal tip. The molecular mechanisms that regulate the elongation of the Müllerian duct are currently unclear. Lhx1 encodes a LIM-homeodomain transcription factor that is essential for male and female reproductive tract development. Lhx1 is expressed in both the Wolffian and Müllerian ducts. Wolffian duct-specific knockout of Lhx1 results in degeneration of the Wolffian duct and consequently the non-cell-autonomous loss of the Müllerian duct. To determine the role of Lhx1 specifically in the Müllerian duct epithelium, we performed a Müllerian duct-specific knockout study using Wnt7a-Cre mice. Loss of Lhx1 in the Müllerian duct epithelium led to a block in Müllerian duct elongation and uterine hypoplasia characterized by loss of the entire endometrium (luminal and glandular epithelium and stroma) and inner circular but not the outer longitudinal muscle layer. Time-lapse imaging and molecular analyses indicate that Lhx1 acts cell autonomously to maintain ductal progenitor cells for Müllerian duct elongation. These studies identify LHX1 as the first transcription factor that is essential in the Müllerian duct epithelial progenitor cells for female reproductive tract development. Furthermore, these genetic studies demonstrate the requirement of epithelial-mesenchymal interactions for uterine tissue compartment differentiation.


Assuntos
Epitélio/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Ductos Paramesonéfricos/metabolismo , Organogênese , Fatores de Transcrição/metabolismo , Útero/embriologia , Útero/metabolismo , Animais , Animais Recém-Nascidos , Morte Celular , Proliferação de Células , Embrião de Mamíferos/metabolismo , Feminino , Deleção de Genes , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fator de Transcrição PAX2/metabolismo , Imagem com Lapso de Tempo , Proteínas Wnt/metabolismo , beta-Galactosidase/metabolismo
9.
Dev Growth Differ ; 57(2): 121-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25705796

RESUMO

The canonical bone morphogenetic proteins (BMPs) signaling have been shown to mediate many embryonic developmental processes. Due to its complexity, there are still many unknowns about this signal pathway including the Smad usage and requirement. Cerebellum, one of the most studied neural organs in development biology, requires canonical BMP signaling for stem cell specification. Here we review the role of canonical BMP signaling during the embryonic cerebellum development. Also, we raise several unsolved issues concerning the BMP signaling including the co-Smad independency of this signaling pathway. Besides, we also propose two models for explaining the cerebellar anterior rhombic lip (ARL) specification mechanisms. In addition, we review the heterogeneity of the ARL stem cells, which may provide new insight into understanding the neural stem cell specification process of the embryonic cerebellum.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Cerebelo/embriologia , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Células-Tronco/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Cerebelo/citologia , Humanos , Proteínas Smad/genética , Células-Tronco/citologia
10.
Int Arch Allergy Immunol ; 167(1): 29-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26112225

RESUMO

BACKGROUND: Shellfish hypersensitivity is among the most common food allergies. A murine model of IgE-mediated shrimp allergy has been established in our laboratory. The aim of this study is to determine the intestinal histological changes and cytokine expression profile of this model sensitized with the major shellfish allergen tropomyosin. METHODS: Female Balb/c mice orally sensitized and challenged with recombinant tropomyosin were sacrificed. Continuous sections of duodenum, jejunum and ileum were prepared using the Swiss roll technique for histological and immunological analysis. Duodenal epithelial cell apoptosis and migration were examined. mRNA expression of IL-4, IL-6, IL-10, IL-13, IL-18 and IFN-γ in intestinal tissue was measured via RT-PCR. RESULTS: In tropomyosin-sensitized and challenged mice, an increased number of eosinophils, mast cells and goblet cells was found 24 h after challenge. There were also increased mast cell and goblet cell numbers at 72 h after challenge, but the level of eosinophils decreased. Differences compared with control mice are most prominent at the duodenum compared to the distal regions. In addition, TUNEL assay indicates a significantly higher apoptosis rate in sensitized mice sacrificed 72 h after challenge, and mRNA expression showed a biased Th2/Th1 cytokine profile and a higher level of murine mast cell protease 1. CONCLUSIONS: This study documented a multitude of histological and immunological changes in the gut in a murine model of shrimp allergy. Even without repetitive intragastric challenge, shrimp tropomyosin induces an increase in the number of inflammatory cells to varying degrees within the small intestine. This model provides an important tool for testing new therapeutic interventions.


Assuntos
Hipersensibilidade Alimentar/imunologia , Trato Gastrointestinal/imunologia , Penaeidae/imunologia , Proteínas/imunologia , Tropomiosina/imunologia , Animais , Apoptose/imunologia , Linfócitos T CD4-Positivos/imunologia , Movimento Celular/imunologia , Proliferação de Células , Citocinas/genética , Modelos Animais de Doenças , Duodeno/imunologia , Eosinófilos/citologia , Células Epiteliais/imunologia , Feminino , Células Caliciformes/citologia , Íleo/imunologia , Imunoglobulina E/imunologia , Inflamação/imunologia , Jejuno/imunologia , Mastócitos/citologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/biossíntese , Frutos do Mar
11.
Arterioscler Thromb Vasc Biol ; 34(1): 152-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24202302

RESUMO

OBJECTIVE: Bone morphogenic protein 4 (BMP4) is involved in the development of endothelial dysfunction in hypertension. This study investigated whether the inhibition of BMP4 signaling improves endothelial function in db/db diabetic mice. APPROACH AND RESULTS: Male db/db mice were treated with noggin via osmotic pump infusion (1 µg/[h·kg(-1)]) for 2 weeks. Adenovirus BMP4-short hairpin RNA was introduced via tail vein injection at a dosage of 10(9) pfu/mouse and its effects were examined 7 days after. Vasoreactivity was studied on wire and pressure myograph. Both noggin treatment and adenovirus BMP4-short hairpin RNA transduction improved endothelium-dependent relaxations in aortae and flow-mediated dilatation in mesenteric arteries of db/db mice. Ex vivo treatment with BMP4 inhibitors and adenovirus BMP4-short hairpin RNA rescued the impaired endothelium-dependent relaxations in db/db mouse aortae and reduced reactive oxygen species overproduction determined by dihydroethidium staining, CM-H2DCFDA fluorescence imaging, and chemiluminescence assay in db/db mouse aortae, and also in ex vivo cultured C57BL/6 mouse aortae or primary mouse aortic endothelial cells treated with high glucose. Likewise, activin receptor-like kinase 3 silencing by short hairpin RNA lentivirus improved endothelium-dependent relaxations in db/db mouse aortae accompanied by reactive oxygen species inhibition in endothelial cells. In addition, noggin reduced BMP4 upregulation in high-glucose-treated endothelial cells and in C57BL/6 mouse aortae and in aortae from db/db mice. CONCLUSIONS: Inhibition of BMP4/activin receptor-like kinase 3/reactive oxygen species signaling improved endothelial function in diabetic mice through limiting oxidative stress in endothelium. Inhibiting BMP4 cascade can become another potential therapeutic strategy against diabetic vascular dysfunction.


Assuntos
Proteína Morfogenética Óssea 4/antagonistas & inibidores , Proteínas de Transporte/farmacologia , Angiopatias Diabéticas/terapia , Endotélio Vascular/efeitos dos fármacos , Terapia Genética/métodos , Interferência de RNA , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Adenoviridae/genética , Animais , Glicemia/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Células Cultivadas , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Vetores Genéticos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Vasodilatadores/farmacologia
12.
CNS Neurosci Ther ; 30(3): e14638, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488445

RESUMO

AIMS: The open-loop nature of conventional deep brain stimulation (DBS) produces continuous and excessive stimulation to patients which contributes largely to increased prevalence of adverse side effects. Cerebellar ataxia is characterized by abnormal Purkinje cells (PCs) dendritic arborization, loss of PCs and motor coordination, and muscle weakness with no effective treatment. We aim to develop a real-time field-programmable gate array (FPGA) prototype targeting the deep cerebellar nuclei (DCN) to close the loop for ataxia using conditional double knockout mice with deletion of PC-specific LIM homeobox (Lhx)1 and Lhx5, resulting in abnormal dendritic arborization and motor deficits. METHODS: We implanted multielectrode array in the DCN and muscles of ataxia mice. The beneficial effect of open-loop DCN-DBS or closed-loop DCN-DBS was compared by motor behavioral assessments, electromyography (EMG), and neural activities (neurospike and electroencephalogram) in freely moving mice. FPGA board, which performed complex real-time computation, was used for closed-loop DCN-DBS system. RESULTS: Closed-loop DCN-DBS was triggered only when symptomatic muscle EMG was detected in a real-time manner, which restored motor activities, electroencephalogram activities and neurospike properties completely in ataxia mice. Closed-loop DCN-DBS was more effective than an open-loop paradigm as it reduced the frequency of DBS. CONCLUSION: Our real-time FPGA-based DCN-DBS system could be a potential clinical strategy for alleviating cerebellar ataxia and other movement disorders.


Assuntos
Ataxia Cerebelar , Estimulação Encefálica Profunda , Transtornos dos Movimentos , Humanos , Camundongos , Animais , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , Estimulação Encefálica Profunda/métodos , Cerebelo , Células de Purkinje/fisiologia , Núcleos Cerebelares/fisiologia
13.
Dev Biol ; 363(1): 247-57, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22240098

RESUMO

Bone morphogenetic proteins (BMPs) are secreted signals that regulate apical ectodermal ridge (AER) functions and interdigital programmed cell death (PCD) of developing limb. However the identities of the intracellular mediators of these signals are unknown. To investigate the role of Smad proteins in BMP-regulated AER functions in limb development, we inactivated Smad1 and Smad5 selectively in AER and ventral ectoderm of developing limb, using Smad1 or/and Smad5 floxed alleles and an En1(Cre/+) knock-in allele. Single inactivation of either Smad1 or Smad5 did not result in limb abnormalities. However, the Smad1/Smad5 double mutants exhibited syndactyly due to a reduction in interdigital PCD and an increase in interdigital cell proliferation. Cell tracing experiments in the Smad1/Smad5 double mutants showed that ventral ectoderm became thicker and the descendents of ventral En1(Cre/+) expressing ectodermal cells were located at dorsal interdigital regions. At the molecular level, Fgf8 expression was prolonged in the interdigital ectoderm of embryonic day (E) 13 Smad1/Smad5 double mutants, suggesting that the ectopic Fgf8 expression may serve as a survival signal for interdigital epithelial and mesenchymal cells. Our result suggests that Smad1 and Smad5 are required and function redundantly as intracellular mediators for BMP signaling in the AER and ventral ectoderm. Smad1/Smad5 signaling in the AER and ventral ectoderm regulates interdigital tissue regression of developing limb. Our mutants with defects in interdigital PCD could also serve as a valuable model for investigation of PCD regulation machinery.


Assuntos
Apoptose , Ectoderma/metabolismo , Transdução de Sinais/genética , Proteína Smad1/genética , Proteína Smad5/genética , Animais , Padronização Corporal/genética , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proliferação de Células , Ectoderma/embriologia , Ectoderma/fisiologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Extremidades/embriologia , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Genéticos , Transdução de Sinais/fisiologia , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo
14.
iScience ; 26(3): 106272, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36915676

RESUMO

Beige adipocytes are thermogenic with high expression of uncoupling protein 1 in the white adipose tissue (WAT), accompanied by angiogenesis. Previous studies showed that Smad4 is important for angiogenesis. Here we studied whether endothelial Smad4-mediated angiogenesis is involved in WAT beiging. Inducible knockout of endothelial cell (EC) selective Smad4 (Smad4 iEC-KO) was achieved by using the Smad4 Floxp/floxp and Tie2 CreERT2 mice. Beige fat induction achieved by cold or adrenergic agonist, and angiogenesis were attenuated in WAT of Smad4 iEC-KO mice, with the less proliferation of ECs and adipogenic precursors. RNA sequencing of human ECs showed that Smad4 is involved in angiogenesis-related pathways. Knockdown of SMAD4 attenuated the upregulation of VEGFA, PDGFA, and angiogenesis in vitro. Treatment of human ECs with palmitic acid-induced Smad1/5 phosphorylation and the upregulation of core endothelial genes. Our study shows that endothelial Smad4 is involved in WAT beiging through angiogenesis and the expansion of adipose precursors into beige adipocytes.

15.
Aging Cell ; 22(2): e13772, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36691110

RESUMO

Chronic binge-like drinking is a risk factor for age-related dementia, however, the lasting and irreversible effect of alcohol on the brain remains elusive. Transcriptomic changes in brain cortices revealed pro-ageing hallmarks upon chronic ethanol exposure and these changes predominantly occur in neurons. The changes are attributed to a prioritized ethyl alcohol oxidation in these cells via the NADPH-dependent cytochrome pathway. This hijacks the folate metabolism of the 1-carbon network which supports the pathway choice of DNA repair via the non-cell cycle-dependent mismatch repair networks. The lost-in-function of such results in the de-inactivation of the less preferred cell cycle-dependent homologous recombination (HR) repair, forcing these post-mitotic cells to re-engage in a cell cycle-like process. However, mature neurons are post-mitotic. Therefore, instead of successfully completing a full round of cell cycle which is necessary for the completion of HR-mediated repair; these cells are arrested at checkpoints. The resulting persistence of repair intermediates induces and promotes the nuclear accumulation of p21 and cyclin B-a trigger for permanent cell cycle exits and irreversible senescence response. Supplementation of bioactive 5-methyl tetrahydrofolate simultaneously at times with ethyl alcohol exposure supports the fidelity of the 1-carbon network and hence the activity of the mismatch repair. This prevents aberrant and irreversible cell cycle re-entry and senescence events of neurons. Together, our findings offer a direct connection between binge-drinking behaviour and its irreversible impact on the brain, which makes it a potential risk factor for dementia.


Assuntos
Senescência Celular , Reparo do DNA , Ciclo Celular , Senescência Celular/genética , Neurônios/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Carbono/metabolismo , Dano ao DNA
16.
J Mol Cell Cardiol ; 52(1): 237-44, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22064324

RESUMO

The expression of bone morphogenic protein 4 (BMP4), a new pro-inflammatory marker, is increased by disturbed flow in endothelial cells (ECs). BMP4 stimulates production of reactive oxygen species (ROS) and causes endothelial cell dysfunction. The present study examined BMP4-induced apoptosis in ECs and isolated arteries from rat, mouse, and human, and the signaling pathways mediating BMP4-induced apoptosis. Apoptosis was assessed by flow cytometry to detect Annexin-V positive cells, and terminal deoxynucleotidyl transferase dUTP nick end (TUNEL) labeling. The superoxide production was measured by dihydroethidium fluorescence. BMP4 induced EC apoptosis in human mesenteric arteries, mouse aortic endothelium, rat primary ECs, and human ECs. BMP4-induced EC apoptosis was mediated through ROS production by activation of NADPH oxidase, which led to cleaved caspase-3 expression. BMP4 also induced sequential activation of p38 MAPK and JNK which was upstream of caspase 3 activation. Knockdown of BMP receptor 1A by lentiviral shRNA or NOX4 siRNA transfection inhibited BMP4-induced ROS production, p38 and JNK phosphorylation, and caspase-3 activation in ECs. JNK siRNA inhibited BMP4-induced JNK phosphorylation and caspase-3 activation. The present study delineates that BMP4 causes EC apoptosis through activation of caspase-3 in a ROS/p38MAPK/JNK-dependent signaling cascade.


Assuntos
Apoptose , Proteína Morfogenética Óssea 4/farmacologia , Células Endoteliais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Caspase 3/metabolismo , Células Endoteliais/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Técnicas In Vitro , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
17.
Biomed Environ Sci ; 25(4): 392-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23026518

RESUMO

OBJECTIVE: To investigate the effect of dietary calcium on plasma lipoprotein profile in castrated and ovariectomized hamsters. METHODS: Male, castrated, female and ovariectomized hamsters (n=36 each group) were randomly divided into three sub-groups (n=12) and fed one of the three diets containing 0, 2, and 8 g calcium per kg diet for a period of six weeks. Changes in plasma lipoprotein profile were monitored at the end of week 0, 3 and 6. RESULTS: Plasma total cholesterol (TC), non-high density lipoprotein cholesterol (non-HDL-C), triacylglycerols (TG) and TC/HDL-C were decreased only in intact female and ovariectomized hamsters. In contrast, three levels of dietary calcium had no effect on lipoprotein profiles in both intact male and castrated hamsters. CONCLUSION: Beneficial modification of lipoprotein profile by dietary calcium was gender-dependent at least in hamsters.


Assuntos
Cálcio da Dieta/uso terapêutico , Colesterol na Dieta/efeitos adversos , Colesterol/sangue , Animais , HDL-Colesterol/sangue , Cricetinae , Feminino , Masculino , Triglicerídeos/sangue
18.
Behav Brain Res ; 428: 113896, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35436531

RESUMO

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficit and repetitive behaviour. In the past few years, increasing clinical evidence has shown that the cerebellum may contribute to the neuropathology of ASD. However, studies in the mechanism for the involvement of the cerebellum in autism remained speculative. Although some have suggested the possibility of a change of glutamate decarboxylases in the cerebellum of autistic patients, this remains controversial and is limited to the alteration in transcriptional level. This study aimed to investigate the cerebellar structure and determine the expression of rate-limiting GABAergic enzymes in GABA signalling of the autism cerebellum. Pregnant C57BL/6 J mice were intraperitoneally injected with a dosage of 500 mg/kg valproic acid (VPA) on embryonic day 10.5 for autistic behavioural induction. This study found that early prenatal exposure to VPA led to tail deformation and decreased cerebellar weight and size. Early adult mouse models with autistic behaviour showed reduced expression of both isoforms of glutamate decarboxylases (GAD) 65 and 67 in the cerebellum. Also, protein expressions of cerebellar type 1 GABA transporter (GAT-1) and GABA transaminase (GABAT) were reduced in VPA mice. It indicated that abnormal GABA production, recycling, and metabolism could alter the excitatory-inhibitory balance in the autistic cerebellum. Thus, our findings provide supporting evidence that cerebellum impairment could be an etiology of environmentally induced autism. Changes in cerebellar structure and the altered GABAergic enzymes in the cerebellum provide targets for future therapeutic studies in idiopathic autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Cerebelo/metabolismo , Modelos Animais de Doenças , Feminino , Glutamato Descarboxilase/metabolismo , Glutamatos/metabolismo , Glutamatos/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Ácido gama-Aminobutírico/metabolismo
19.
Mol Neurobiol ; 59(7): 4578-4592, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35581519

RESUMO

Cerebellum is one of the major targets of autoimmunity and cerebellar damage that leads to ataxia characterized by the loss of fine motor coordination and balance, with no treatment available. Deep brain stimulation (DBS) could be a promising treatment for ataxia but has not been extensively investigated. Here, our study aims to investigate the use of interposed nucleus of deep cerebellar nuclei (IN-DCN) for ataxia. We first characterized ataxia-related motor symptom of a Purkinje cell (PC)-specific LIM homeobox (Lhx)1 and Lhx5 conditional double knockout mice by motor coordination tests, and spontaneous electromyogram (EMG) recording. To validate IN-DCN as a target for DBS, in vivo local field potential (LFP) multielectrode array recording of IN-DCN revealed abnormal LFP amplitude surges in PCs. By synchronizing the EMG and IN-DCN recordings (neurospike and LFP) with high-speed video recordings, ataxia mice showed poorly coordinated movements associated with low EMG amplitude and aberrant IN-DCN neural firing. To optimize IN-DCN-DBS for ataxia, we tested DBS parameters from low (30 Hz) to high stimulation frequency (130 or 150 Hz), and systematically varied pulse width values (60 or 80 µs) to maximize motor symptom control in ataxia mice. The optimal IN-DCN-DBS parameter reversed motor deficits in ataxia mice as detected by animal behavioral tests and EMG recording. Mechanistically, cytokine array analysis revealed that anti-inflammatory cytokines such as interleukin (IL)-13 and IL-4 were upregulated after IN-DCN-DBS, which play key roles in neural excitability. As such, we show that IN-DCN-DBS is a promising treatment for ataxia and possibly other movement disorders alike.


Assuntos
Ataxia Cerebelar , Estimulação Encefálica Profunda , Animais , Anti-Inflamatórios , Citocinas , Camundongos , Camundongos Knockout
20.
NPJ Regen Med ; 7(1): 45, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064798

RESUMO

Peripheral nerve injury (PNI) often results in spontaneous motor recovery; however, how disrupted cerebellar circuitry affects PNI-associated motor recovery is unknown. Here, we demonstrated disrupted cerebellar circuitry and poor motor recovery in ataxia mice after PNI. This effect was mimicked by deep cerebellar nuclei (DCN) lesion, but not by damaging non-motor area hippocampus. By restoring cerebellar circuitry through DCN stimulation, and reversal of neurotransmitter imbalance using baclofen, ataxia mice achieve full motor recovery after PNI. Mechanistically, elevated glutamate-glutamine level was detected in DCN of ataxia mice by magnetic resonance spectroscopy. Transcriptomic study revealed that Gria1, an ionotropic glutamate receptor, was upregulated in DCN of control mice but failed to be upregulated in ataxia mice after sciatic nerve crush. AAV-mediated overexpression of Gria1 in DCN rescued motor deficits of ataxia mice after PNI. Finally, we found a correlative decrease in human GRIA1 mRNA expression in the cerebellum of patients with ataxia-telangiectasia and spinocerebellar ataxia type 6 patient iPSC-derived Purkinje cells, pointing to the clinical relevance of glutamatergic system. By conducting a large-scale analysis of 9,655,320 patients with ataxia, they failed to recover from carpal tunnel decompression surgery and tibial neuropathy, while aged-match non-ataxia patients fully recovered. Our results provide insight into cerebellar disorders and motor deficits after PNI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA