Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 48(1): 196-209, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36048349

RESUMO

Although fluoxetine (FLX) is a commonly used drug in psychiatric disorders, such as major depressive disorder, anxiety disorder, panic disorder, and obsessive-compulsive disorder, the mechanism by which FLX exerts its therapeutic effect is not completely understood. In this study, we aimed to determine the possible mechanism by which FLX focuses on microglial phagocytosis. FLX reduced phagocytic function in BV2 cells and increased REV-ERBα without affecting other microglia-related genes, such as inflammation and phagocytosis. Although FLX did not change BMAL1 protein levels, it restricted the nucleocytoplasmic transport (NCT) of BMAL1, leading to its cytosolic accumulation. REV-ERBα antagonist SR8278 rescued the decreased phagocytic activity and restricted NCT of BMAL1. We also found that REV-ERBα mediates the effect of FLX via the inhibition of phospho-ERK (pERK). The ERK inhibitor FR180204 was sufficient to reduce phagocytic function in BV2 cells and restrict the NCT of BMAL1. These results were recapitulated in the primary microglia. In conclusion, we propose that FLX decreases phagocytic function and restricts BMAL1 NCT via REV-ERBα. In addition, ERK inhibition mimics the effects of FLX on microglia.


Assuntos
Transtorno Depressivo Maior , Fluoxetina , Humanos , Fluoxetina/farmacologia , Microglia/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Transtorno Depressivo Maior/metabolismo , Inflamação/metabolismo , Ritmo Circadiano/fisiologia
2.
Neurochem Res ; 47(5): 1341-1353, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35103911

RESUMO

Acidic environment evoked by stroke, traumatic brain injury, and Alzheimer's disease may change the functional properties of microglia. Nevertheless, the underlying mechanisms of functional changes in microglia remain unclear. In this study, we found that acidic stimuli (pH 6.8) increased rapidly interleukin (IL)-1ß and IL-6 mRNA levels and subsequently reduced IL-10, transforming growth factor (TGF)-ß1, Cx3cr1, and P2ry12 as the exposure time to acidic environment increase in BV2 cells. In addition, persistent acidic environment (pH 6.8 for 6 h) induced impaired phagocytic function in BV2 cells. Short-term acidic exposure (pH 6.8 for 30 min) increased cyclic AMP (cAMP) and phospho-protein kinase A (PKA) but inhibited phospho-extracellular signal-regulated kinase (p-ERK). However, under persistent acidic environment (pH 6.8 for 6 h), cyclic AMP and PKA were normalized and p-ERK was increased with TDAG8 (T cell death associated gene 8; GPR65) reduction. FR 180,204, an ERK inhibitor, rescued the persistent acidic environment-induced functional changes in BV2 cells and its effect was recapitulated in primary neonatal microglia. Thus, we propose that ERK targeting may be an alternative strategy to restore microglial dysfunction in the central nervous system (CNS) acidic environment in various neurological disorders.


Assuntos
AMP Cíclico , Microglia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Microglia/metabolismo , Fagocitose
3.
J Neuroinflammation ; 18(1): 294, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920745

RESUMO

BACKGROUND: The emerging role of microglia in neurological disorders requires a novel method for obtaining massive amounts of adult microglia. We aim to develop a new method for obtaining bankable and expandable adult-like microglia in mice. METHODS: The head neuroepithelial layer (NEL) that composed of microglial progenitor and neuroepithelial cells at mouse E13.5 was dissected and then cultured or banked. Microglia (MG) isolated from the cultured NEL by magnetic-activated cell sorting system were obtained and named NEL-MG. RESULTS: The NEL included microglia progenitors that proliferate and ramify over time with neuroepithelial cells as feeder. In functional analysis, NEL-MG exhibited microglial functions, such as phagocytosis (microbeads, amyloid ß, synaptosome), migration, and inflammatory response following lipopolysaccharide (LPS) stimulation. NEL was passage cultured and the NEL-MG exhibited a higher expression of microglia signature genes than the neonatal microglia, a widely used in vitro surrogate. Banking or long-term passage culture of NEL did not affect NEL-MG characteristics. Transcriptome analysis revealed that NEL-MG exhibited better conservation of microglia signature genes with a closer fidelity to freshly isolated adult microglia than neonatal microglia. NEL-MG could be re-expandable when they were plated again on neuroepithelial cells. CONCLUSIONS: This new method effectively contributes to obtaining sufficient matured form of microglia (adult-like microglia), even when only a small number of experimental animals are available, leading to a broad application in the field of neuroscience.


Assuntos
Técnicas de Cultura de Células/métodos , Córtex Cerebral/fisiologia , Células Epiteliais/fisiologia , Perfilação da Expressão Gênica/métodos , Microglia/fisiologia , Útero/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Linhagem Celular , Córtex Cerebral/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Útero/citologia
4.
FASEB J ; 33(9): 10116-10125, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31211931

RESUMO

Colon organoids (colonoids) are known to be similar to colon tissue in structure and function, which makes them useful in the treatment of intestinal de-epithelialized disease. Matrigel, which is used as a transplantation scaffold for colonoids, cannot be used in clinical applications because of its undefined composition and tumorigenicity. This study identifies clinically available scaffolds that are effective for colonoid transplantation in damaged intestinal mucosa. The colon crypt was isolated and cultured from C57BL/6-Tg[CAG enhanced green fluorescent protein (EGFP)131Osb/LeySopJ mice into EGFP + colonoids and subsequently transplanted into the EDTA colitis mouse model using gelatin, collagen, or fibrin glue scaffolds. To identify scaffolds suitable for colonoid engraftment in injured colon mucosa, the success rates of transplantation and secondary EGFP colonoid formation were measured, and the scaffolds' mediated toxicity in vitro and in vivo was observed in recipient mice. When colonoids were transplanted with gelatin, collagen, and fibrin glue into the EDTA colitis mouse model, all groups were found to be successfully engrafted. Fibrin glue, especially, showed significant increase in the engrafted area compared with Matrigel after 4 wk. The scaffolds used in the study did not induce colonic toxicity after transplantation into the recipients' colons and were thus deemed safe when locally administrated. This study suggests new methods for and provides evidence of the safety and utility of the clinical application of colonoid-based therapeutics. Furthermore, the methods introduced in this study will be helpful in developing cell treatment using the esophagus or a stomach organoid for various digestive-system diseases.-Jee, J., Jeong, S. Y., Kim, H. K., Choi, S. Y., Jeong, S., Lee, J., Ko, J. S., Kim, M. S., Kwon, M.-S., Yoo, J. In vivo evaluation of scaffolds compatible for colonoid engraftments onto injured mouse colon epithelium.


Assuntos
Colite/terapia , Colo/lesões , Mucosa Intestinal/lesões , Organoides/transplante , Alicerces Teciduais , Animais , Colite/induzido quimicamente , Colágeno/toxicidade , Combinação de Medicamentos , Ácido Edético/toxicidade , Epitélio/lesões , Adesivo Tecidual de Fibrina , Gelatina , Genes Reporter , Sobrevivência de Enxerto , Laminina/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/citologia , Proteoglicanas/toxicidade , Alicerces Teciduais/efeitos adversos
5.
J Neurosci ; 38(7): 1611-1621, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29305532

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of Parkinson's disease (PD). The neuropathology of LRRK2 mutation-related PD, including increased dopaminergic neurodegeneration and Lewy bodies, is indistinguishable from that of idiopathic PD. The subtle nonmotor phenotypes of LRRK2 mutation-related PD have not been fully evaluated. In the present study, we examined anxiety/depression-like behaviors and accompanying neurochemical changes in differently aged transgenic (Tg) mice expressing human mutant LRRK2 G2019S. Through multiple behavioral tests, including light-dark test, elevated plus maze, sucrose preference test, forced swimming test, and tail-suspension test, we found that anxiety/depression-like behavior appeared in middle-aged (43-52 weeks) Tg mice before the onset of PD-like motor dysfunction. These behavioral tests were performed using both male and female mice, and there were no sex-related differences in behavioral changes in the middle-aged Tg mice. Along with behavioral changes, serotonin levels also significantly declined in the hippocampus of Tg mice. Additionally, increases in the expression of the 5-HT1A receptor (5-HT1AR) grew more significant with aging and were detected in the hippocampus, amygdala, and dorsal raphe nucleus. In vitro study using the serotonergic RN46A and hippocampal HT22 cells showed that 5-HT1AR upregulation was related to enhanced expression of LRRK2 G2019S and was attenuated by the LRRK2 inhibitor LRRK2-IN-1. Wild-type LRRK2 had no significant effect on 5-HT1AR transcription. The present study provides the first in vivo and in vitro evidence demonstrating abnormal regulation of 5-HT1AR along with the manifestation of anxiety/depression-like, nonmotor symptom in PD related to LRRK2.SIGNIFICANCE STATEMENT Parkinson's disease (PD), the second most common neurodegenerative disorder, is clinically characterized by motor dysfunctions. In most cases, various nonmotor symptoms present several years before the onset of the classical motor features of PD and severely affect the quality of life of patients. Here, we demonstrate the causative role of leucine-rich repeat kinase 2 (LRRK2), a common PD-linked mutation, in the development of anxiety/depression-like behaviors. We found that age-dependent 5-HT1A receptor upregulation in the hippocampus, amygdala, and dorsal raphe nucleus is accompanied by the expression of the LRRK2 mutant phenotype. Our findings demonstrating a potential mechanism for nonmotor psychiatric symptoms produced by LRRK2 mutation suggest that directly targeting the 5-HT1A receptor can improve the therapeutic efficacy of drugs for PD-associated depression.


Assuntos
Ansiedade/genética , Ansiedade/psicologia , Depressão/genética , Depressão/psicologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Transtornos dos Movimentos/genética , Receptor 5-HT1A de Serotonina/genética , Envelhecimento/genética , Envelhecimento/psicologia , Animais , Química Encefálica/genética , Feminino , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/psicologia , Receptor 5-HT1A de Serotonina/biossíntese , Serotonina/metabolismo , Regulação para Cima/genética
6.
Ann Neurol ; 84(3): 361-373, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30048006

RESUMO

OBJECTIVE: To assess the safety and efficacy of 2 repeated intrathecal injections of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in amyotrophic lateral sclerosis (ALS). METHODS: In a phase 2 randomized controlled trial (NCT01363401), 64 participants with ALS were randomly assigned treatments (1:1) of riluzole alone (control group, n = 31) or combined with 2 BM-MSC injections (MSC group, n = 33). Safety was assessed based on the occurrence of adverse events. The primary efficacy outcome was changes in Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) score from baseline to 4 and 6 months postinjection. Post hoc analysis includes investigation of cerebrospinal fluid biomarkers and long-term survival analysis. RESULTS: Safety rating showed no groupwise difference with absence of serious treatment-related adverse events. Mean changes in ALSFRS-R scores from baseline to 4 and 6 months postinjection were reduced in the MSC group compared with the control group (4 months: 2.98, 95% confidence interval [CI] = 1.48-4.47, p < 0.001; 6 months: 3.38, 95% CI = 1.23-5.54, p = 0.003). The MSC group showed decreased proinflammatory and increased anti-inflammatory cytokines. In good responders, transforming growth factor ß1 significantly showed inverse correlation with monocyte chemoattractant protein-1. There was no significant difference in long-term survival between groups. INTERPRETATION: Repeated intrathecal injections of BM-MSCs demonstrated a possible clinical benefit lasting at least 6 months, with safety, in ALS patients. A plausible action mechanism is that BM-MSCs mediate switching from pro- to anti-inflammatory conditions. A future randomized, double-blind, large-scale phase 3 clinical trial with additional BM-MSC treatments is required to evaluate long-term efficacy and safety. Ann Neurol 2018;84:361-373.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Adulto , Idoso , Biomarcadores/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Citocinas/metabolismo , Método Duplo-Cego , Feminino , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Pessoa de Meia-Idade
7.
Skeletal Radiol ; 46(8): 1071-1080, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28432396

RESUMO

OBJECTIVES: To assess the incidence of abnormal internal rotation of the talus in the axial plane in patients with varus ankle osteoarthritis, and to determine whether this incidence differs from the severity of varus ankle osteoarthritis (moderate versus severe). MATERIALS AND METHODS: We retrospectively evaluated weight-bearing computed tomography (CT) and plain radiographs of 52 ankles with no abnormalities (control group) and 96 ankles with varus osteoarthritis (varus-OA group), which were further stratified into a moderate-OA subgroup (50 ankles) and a severe-OA subgroup (46 ankles). A new radiographic parameter on weight-bearing CT, the talus rotation ratio, was used to assess the rotation of the talus in the axial plane. The normal range of the talus rotation ratio was defined as the 95% prediction interval for talus rotation ratio values in the control group. Abnormal internal rotation of the talus was defined for talus rotation ratio values above the normal range. We determined the incidence of abnormal internal rotation of the talus in the varus-OA group, moderate-OA subgroup, and severe-OA subgroup. RESULTS: In the varus-OA group, the incidence of abnormal internal rotation of the talus was 45% (43 ankles), which corresponded to an incidence of 32% (16 ankles) in the moderate-OA subgroup and 59% (27 ankles) in the severe-OA subgroup (p = 0.013). CONCLUSION: Our study demonstrates that abnormal internal rotation of the talus occurs in patients with varus ankle osteoarthritis, and is more frequently noted in severe than in moderate varus ankle osteoarthritis.


Assuntos
Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/fisiopatologia , Osteoartrite/diagnóstico por imagem , Osteoartrite/fisiopatologia , Tálus/diagnóstico por imagem , Tálus/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Suporte de Carga/fisiologia , Adolescente , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Rotação , Índice de Gravidade de Doença
8.
J Neuroinflammation ; 12: 197, 2015 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-26521132

RESUMO

BACKGROUND: Identifying stress vulnerability after antidepressant discontinuation may be useful in treating relapses in depression. Previous studies have suggested significant effects of the immune system as well as the central nervous system (CNS) on progression and induction of major depression. In the present study, we hypothesized that the factors that are not rescued by a tricyclic antidepressant imipramine may be associated with stress vulnerability and relapses in depression. METHODS: To address this issue, mice were exposed to 2 h of restraint stress for 21 consecutive days (chronic restraint stress (CRS)) with or without co-treatment of imipramine. These groups were exposed to an electronic foot shock (FS) as additional stress after imipramine washout. Main targets of stress and antidepressants were analyzed in the hippocampus, lymph node, and serum after a series of depression-like behavior analysis. RESULTS: In this study, we found for the first time that mice exposed to CRS with a tricyclic antidepressant imipramine co-treatment, which did not show depressive-like behaviors, were vulnerable to subsequent stressful stimuli compared to the non-stressed mice after imipramine washout. CRS mice with imipramine co-treatment did not show any difference in BDNF, serotonin receptors, pro-inflammatory cytokines, or kynurenine pathway in the hippocampus compared to the controls. However, peripheral IL-4, IL-10, and alternatively activated microglial phenotypes in the hippocampus were not restored with sustained reduction in CRS mice despite chronic imipramine administration. Supplementing recombinant IL-4 and IL-10 in co-Imi+CRS mice prevented the stress vulnerability on additional stress and restored factors related to alternatively activated microglia (M2) in the hippocampus. CONCLUSION: Thus, our results suggest that the reduced IL-4 and IL-10 levels in serum with hippocampal M2 markers may be involved in the stress vulnerability after imipramine discontinuation, and the restoration and modulation of these factors may be useful to some forms of depression-associated conditions.


Assuntos
Antidepressivos Tricíclicos/efeitos adversos , Imipramina/efeitos adversos , Interleucina-10/uso terapêutico , Interleucina-4/uso terapêutico , Estresse Psicológico/tratamento farmacológico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Animais , Ansiedade/psicologia , Comportamento Animal , Depressão/psicologia , Eletrochoque , Comportamento Exploratório/efeitos dos fármacos , Preferências Alimentares , Hipocampo/patologia , Linfonodos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Proteínas Recombinantes/uso terapêutico , Restrição Física , Estresse Psicológico/psicologia , Síndrome de Abstinência a Substâncias/psicologia
9.
J Neurochem ; 131(2): 206-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24995608

RESUMO

In a previous study, we reported that intrathecal injection of mesenchymal stem cells (MSCs) slowed disease progression in G93A mutant superoxide dismutase1 transgenic mice. In this study, we found that intrathecal MSC administration vastly increased the infiltration of peripheral immune cells into the spinal cord of Amyotrophic lateral sclerosis (ALS) mice (G93A mutant superoxide dismutase1 transgenic). Thus, we investigated the immunomodulatory effect of MSCs on peripheral blood mononuclear cells (PBMCs) in ALS patients, focusing on regulatory T lymphocytes (Treg ; CD4(+) /CD25(high) /FoxP3(+) ) and the mRNA expression of several cytokines (IFN-γ, TNF-α, IL-17, IL-4, IL-10, IL-13, and TGF-ß). Peripheral blood samples were obtained from nine healthy controls (HC) and sixteen patients who were diagnosed with definite or probable ALS. Isolated PBMCs from the blood samples of all subjects were co-cultured with MSCs for 24 or 72 h. Based on a fluorescence-activated cell sorting analysis, we found that co-culture with MSCs increased the Treg /total T-lymphocyte ratio in the PBMCs from both groups according to the co-culture duration. Co-culture of PBMCs with MSCs for 24 h led to elevated mRNA levels of IFN-γ and IL-10 in the PBMCs from both groups. However, after co-culturing for 72 h, although the IFN-γ mRNA level had returned to the basal level in co-cultured HC PBMCs, the IFN-γ mRNA level in co-cultured ALS PBMCs remained elevated. Additionally, the levels of IL-4 and TGF-ß were markedly elevated, along with Gata3 mRNA, a Th2 transcription factor mRNA, in both HC and ALS PBMCs co-cultured for 72 h. The elevated expression of these cytokines in the co-culture supernatant was confirmed via ELISA. Furthermore, we found that the increased mRNA level of indoleamine 2,3-dioxygenase (IDO) in the co-cultured MSCs was correlated with the increase in Treg induction. These findings of Treg induction and increased anti-inflammatory cytokine expression in co-cultured ALS PBMCs provide indirect evidence that MSCs may play a role in the immunomodulation of inflammatory responses when MSC therapy is targeted to ALS patients. We propose the following mechanism for the effect of mesenchymal stem cells (MSCs) administered intrathecally in amyotrophic lateral sclerosis (ALS): MSCs increase infiltration of peripheral immune cells into CNS and skew the infiltrated immune cells toward regulatory T lymphocytes (Treg ) and Th2 lymphocytes. Treg and Th2 secret anti-inflammatory cytokines such as IL-4, IL-10, and TGF-ß. A series of immunomodulatory mechanism provides a new strategy for ALS treatment.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/terapia , Imunomodulação/imunologia , Leucócitos Mononucleares/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Adulto , Animais , Técnicas de Cocultura , Feminino , Humanos , Injeções Espinhais , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Linfócitos T Reguladores/imunologia , Adulto Jovem
10.
Transl Neurodegener ; 13(1): 10, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378788

RESUMO

Brain aging is a recognized risk factor for neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease), but the intricate interplay between brain aging and the pathogenesis of these conditions remains inadequately understood. Cellular senescence is considered to contribute to cellular dysfunction and inflammaging. According to the threshold theory of senescent cell accumulation, the vulnerability to neurodegenerative diseases is associated with the rates of senescent cell generation and clearance within the brain. Given the role of microglia in eliminating senescent cells, the accumulation of senescent microglia may lead to the acceleration of brain aging, contributing to inflammaging and increased vulnerability to neurodegenerative diseases. In this review, we propose the idea that the senescence of microglia, which is notably vulnerable to aging, could potentially serve as a central catalyst in the progression of neurodegenerative diseases. The senescent microglia are emerging as a promising target for mitigating neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/patologia , Microglia/patologia , Encéfalo/patologia , Senescência Celular , Esclerose Lateral Amiotrófica/patologia
11.
Stem Cells Transl Med ; 13(4): 309-316, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244235

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by selective and progressive neurodegenerative changes in motor neural networks. Given the system complexity, including anatomically distributed sites of degeneration from the motor cortex to the spinal cord and chronic pro-inflammatory conditions, a cell-based therapeutic strategy could be an alternative approach to treating ALS. Lessons from previous mesenchymal stromal/stem cell (MSC) trials in ALS realized the importance of 3 aspects in current and future MSC therapy, including the preparation of MSCs, administration routes and methods, and recipient-related factors. This review briefly describes the current status and future prerequisites for an optimal strategy using bone-marrow-originated MSCs to treat ALS. We suggest mandatory factors in the optimized therapeutic strategy focused on advanced therapy medicinal products produced according to Good Manufacturing Practice, an optimal administration method, the selection of proper patients, and the importance of biomarkers.


Assuntos
Esclerose Lateral Amiotrófica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Esclerose Lateral Amiotrófica/terapia , Medula Óssea , Biomarcadores , Transplante de Células-Tronco Mesenquimais/métodos
12.
Front Immunol ; 15: 1380063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863704

RESUMO

Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.


Assuntos
Barreira Hematoencefálica , Encéfalo , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Animais , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Privilégio Imunológico
13.
Front Cell Neurosci ; 17: 1162966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396924

RESUMO

Postpartum depression (PPD) is another type of depression, including emotional fluctuation, fatigue, and anxiety. Based on the specific event like giving birth, it can be speculated that PPD might have its specific mechanism. Here, we confirmed that dexamethasone (DEX) administration during pregnancy (gestational days 16-18) induced depressive- and anxiety-like behaviors in dam (DEX-dam) after weaning period (3 weeks). DEX-dam showed anxiety-like behaviors in open-field test (OFT) and light-dark test (LD). In addition, DEX-dam exhibited depressive-like behaviors with the increased immobility time in forced swimming test (TST). Molecular analysis confirmed that microglia, rather than neurons, astrocytes, and oligodendrocytes, are involved in anxiety-/depressive-like behaviors. Notably, P2ry12, homeostatic gene, and purinoceptor, along with hyper-ramified form, were reduced in the hippocampus of DEX-dam. In addition, we found that IL-10 mRNA was reduced in lymph nodes without alteration of pro-inflammatory cytokines, such as TNF-α, IL-1ß, and IL-6. Interestingly, anxiety-/depressive-like behaviors of DEX-dam were restored with the normalization of P2ry12 and IL-10 after 10 weeks postpartum without antidepressants. Our results propose that stress hormone elevation during pregnancy might be associated with PPD via microglial P2RY12 and peripheral IL-10.

14.
Transl Psychiatry ; 13(1): 48, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750547

RESUMO

Few studies report the microglia involvement in the pathogenesis of panic disorder (PD), although the crucial role of microglia in other neuropsychiatric diseases is being emphasized. In addition, there is no report to characterize the phenotypic and functional levels of PD patient-derived microglia to find their clinical relevance. Herein, we used a model to induce patient-derived microglia-like cells (iMGs) to clarify the molecular characteristics and function of PD-iMGs. We established iMGs from 17 PD patients and 16 healthy controls (non-psychiatric controls, HC). PD-iMGs showed increased T-cell death-associated gene-8 expression per the proposal of a previous in vivo study. In addition, we found that patient-derived iMGs showed reduced phagocytosis and increased TREM2 expression. We analyzed the phenotype of the PD-iMGs by RNA sequencing. The PD-iMGs clustered together distinct from HC-iMGs. Gene set enrichment analysis revealed the involvement of cholesterol biosynthesis and steroid metabolism in PD-iMGs. Regarding the cholesterol synthesis pathway, we discovered ACAT2 and DHCR7 as the most impacted genes related to a character of PD-iMGs compared to HC-iMGs. The ACAT2, a major cholesterol esterifier, was increased in PD-iMGs. Nevertheless, PD-iMGs did not show lipid droplet accumulation. Interestingly, ACAT2 expression was inversely correlated with the severity of depression and anxiety sensitivity to publicly observable anxiety reactions. We propose that microglia of PD patients have unique characteristics with dysregulation of cholesterol biosynthesis pathway and impaired phagocytosis, reflecting clinical phenotype.


Assuntos
Transtorno de Pânico , Humanos , Microglia/metabolismo , Relevância Clínica , Ansiedade/psicologia , Colesterol/metabolismo
15.
Mol Neurobiol ; 60(8): 4761-4777, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154887

RESUMO

Microglia plays a key role in determining the progression of amyotrophic lateral sclerosis (ALS), yet their precise role in ALS has not been identified in humans. This study aimed to identify a key factor related to the functional characteristics of microglia in rapidly progressing sporadic ALS patients using the induced microglia model, although it is not identical to brain resident microglia. After confirming that microglia-like cells (iMGs) induced by human monocytes could recapitulate the main signatures of brain microglia, step-by-step comparative studies were conducted to delineate functional differences using iMGs from patients with slowly progressive ALS [ALS(S), n = 14] versus rapidly progressive ALS [ALS(R), n = 15]. Despite an absence of significant differences in the expression of microglial homeostatic genes, ALS(R)-iMGs preferentially showed defective phagocytosis and an exaggerated pro-inflammatory response to LPS stimuli compared to ALS(S)-iMGs. Transcriptome analysis revealed that the perturbed phagocytosis seen in ALS(R)-iMGs was closely associated with decreased NCKAP1 (NCK-associated protein 1)-mediated abnormal actin polymerization. NCKAP1 overexpression was sufficient to rescue impaired phagocytosis in ALS(R)-iMGs. Post-hoc analysis indicated that decreased NCKAP1 expression in iMGs was correlated with the progression of ALS. Our data suggest that microglial NCKAP1 may be an alternative therapeutic target in rapidly progressive sporadic ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Microglia/metabolismo , Fagocitose/genética , Monócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
16.
Toxicol Appl Pharmacol ; 258(1): 82-8, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22036725

RESUMO

Sulfur mustard (2,2'-bis-chloroethyl-sulfide; SM) has been a military threat since the World War I. The emerging threat of bioterrorism makes SM a major threat not only to military but also to civilian world. SM injury elicits an inflammatory response characterized by infiltration of neutrophils. Although SM was reported to prime neutrophils, the mechanism has not been identified yet. In the present study, we investigated the mechanism of SM-induced priming in human neutrophils. SM increased [Ca(2+)](i) in human neutrophils in a concentration-dependent fashion. Transient receptor potential melastatin (TRPM) 2 inhibitors (clotrimazole, econazole and flufenamic acid) and silencing of TRPM2 by shRNA attenuated SM-induced [Ca(2+)](i) increase. SM primed degranulation of azurophil and specific granules in response to activation by fMLP as previously reported. SB203580, an inhibitor of p38 MAPK, inhibited SM-induced priming. Neither PD98057, an ERK inhibitor, nor SP600215, a JNK inhibitor, inhibited SM-induced priming. In addition, SM enhanced phosphorylation of NF-kB p65 and release of TNF-α, interleukin (IL)-6 and IL-8. SB203580 inhibited SM-induced NF-kB phosphorylation and cytokine release. These results suggest the involvement of TRPM2/p38 MAPK pathway in SM-induced priming and cytokines release in neutrophils.


Assuntos
Degranulação Celular/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Citocinas/biossíntese , Sistema de Sinalização das MAP Quinases/fisiologia , Gás de Mostarda/toxicidade , Neutrófilos/efeitos dos fármacos , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Humanos , Neutrófilos/fisiologia , Fosforilação , Canais de Cátion TRPM/fisiologia , Fator de Transcrição RelA/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
17.
Arch Pharm Res ; 45(9): 618-630, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36166145

RESUMO

For a long time, microglia have been recognized as the main culprits of neuroinflammatory responses because they are primary phagocytes present in the parenchyma of the central nervous system (CNS). However, with the evolving concept of microglial biology, advanced and precise approaches, rather than the global inhibition of activated microglia, have been proposed in the management of neurological disorders. Yolk sac-derived resident microglia have heterogeneous composition according to brain region, sex, and diseases. They play a key role in the maintenance of CNS homeostasis and as primary phagocytes. The perturbation of microglia development can induce neurodevelopmental disorders. Microglia aggravate or alleviate neuroinflammation according to microenvironment and their spatiotemporal dynamics. They are long-lived cells and repopulate via their proliferation or external monocyte engraft. Based on this evolving concept, understanding advanced therapeutic strategies targeting microglia can give us an opportunity to discover novel therapies for neurological disorders.


Assuntos
Microglia , Doenças Neuroinflamatórias , Sistema Nervoso Central/fisiologia , Humanos , Microglia/efeitos dos fármacos , Microglia/fisiologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico
18.
Bio Protoc ; 12(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36082369

RESUMO

In mice, microglial precursors in the yolk sac migrate to the brain parenchyma through the head neuroepithelial layer between embryonic days 8.5 (E8.5)-E16.5 and acquire their unique identity with a ramified form. Based on the microglial developmental process, we dissected the neuroepithelial layer (NEL) of E13.5 mice, which is composed of microglial progenitor and neuroepithelial cells. The NEL was bankable and expandable. In addition, microglial precursors were matured according to NEL culture duration. The matured microglia (MG; CD11b-positive cells) were easily isolated from the cultured NEL using a magnetic-activated cell sorting system and named NEL-MG. In conclusion, we obtained higher yields of adult-like microglia (mature microglia: NEL-MG) compared to previous in vitro surrogates such as neonatal microglia and microglial cell lines. Graphical abstract.

19.
Arch Pharm Res ; 45(1): 11-28, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35060088

RESUMO

Atopic dermatitis (AD) and mood disorder comorbidities are typical, but the exact mechanism underlying their interplay has not been clarified. In this study, we aimed to identify the possible mechanisms of anxiety/depressive-like behaviors observed in AD, focusing on microglia. AD was induced by Dermatophagoides farinae body extract (Dfb) in NC/Nga mice and anxiety/depressive-like behaviors were analyzed by behavioral assessments such as open field test (OFT), tail suspension test (TST), sucrose preference test (SPT), and social interaction. As clinical symptoms of AD induced, anxiety/depressive-like behaviors were increased in the OFT and TST and serum glucocorticoid was elevated. AD mice showed an increased mRNA expression of interleukin-4 (IL-4) in lymph nodes but decreased arginase 1 (Arg1) mRNA expression without a change of IL-4 in the hippocampus. In addition, AD mice showed microglia with a shortened branch of de-ramified form and astrocytes with longer processes and decreased branching in the hippocampus, especially in the dentate gyrus (DG). The immunofluorescence study of the DG confirmed that Arg1 reduction was associated with microglia, but not astrocytes. Furthermore, glucocorticoid receptor reduction, increased 5-HT1AR, reduced phosphorylated cAMP response element-binding protein (pCREB), and brain-derived neurotrophic factor (BDNF) expression were identified in the hippocampus of AD mice. Notably, an immunofluorescence study confirmed that pCREB was decreased in the DG of AD mice. Collectively, our data suggest that the reduced Arg1 positive microglia might contribute to anxiety/depressive-like behaviors via pCREB/BDNF reduction in AD.


Assuntos
Ansiedade/complicações , Arginase/metabolismo , Depressão/complicações , Dermatite Atópica/complicações , Microglia/enzimologia , Animais , Antígenos de Dermatophagoides/efeitos adversos , Ansiedade/patologia , Arginase/fisiologia , Western Blotting , Depressão/patologia , Dermatite Atópica/patologia , Dermatite Atópica/psicologia , Modelos Animais de Doenças , Imunofluorescência , Elevação dos Membros Posteriores , Masculino , Camundongos , Microglia/patologia , Teste de Campo Aberto , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Schizophrenia (Heidelb) ; 8(1): 71, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075925

RESUMO

Fetal microglia that are particularly sensitive cells to the changes in utero environment might be involved in the sex-biased onset and vulnerability to psychiatric disorders. To address this issue, we administered a 50 µg/kg dexamethasone (DEX) to dams subcutaneously from gestational days 16 to 18 and a series of behavioral assessments were performed in the offspring. Prenatal exposure to dexamethasone (PN-DEX) induced schizophrenia (SCZ)-relevant behaviors in male mice and depressive-like behavior in female mice. SCZ-relevant behavioral patterns occurred in 10-week-old (10 W) male mice but not in 4-week-old (4 W) male mice. Microglia in the medial prefrontal cortex (mPFC) and the striatum (STR) of 10 W males prenatally treated with dexamethasone (10 W PN-DEX-M) showed hyper-ramified morphology and dramatically reduced spine density in mPFC. Immunofluorescence studies indicated that microglia in the mPFC of the 10 W PN-DEX-M group interacted with pre-synaptic Bassoon and post-synaptic density 95 (PSD95) puncta. PN-DEX-M also showed significantly changed dopamine system proteins. However, a testosterone surge during adolescence was not a trigger on SCZ-relevant behavior occurrence in 10 W PN-DEX-M. Furthermore, females prenatally treated with dexamethasone (PN-DEX-F) displayed depressive-like behavior, in addition to HPA-axis activation and inflammatory microglial phenotypes in their hippocampus (HPC). We propose that altered microglial function, such as increased synaptic pruning, may be involved in the occurrence of SCZ-relevant behavior in PN-DEX-M and sex-biased abnormal behavior in the PN-DEX model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA