Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 14(10): 2321-30, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23744540

RESUMO

The properties of the components of ZnO/CdSe/CuSCN extremely thin absorber (ETA) solar cells based on electrodeposited ZnO nanowires (NWs) were investigated. The goal was to study the influence of their morphology on the characteristics of the solar cells. To increase the energy conversion efficiency of the solar cell, it was generally proposed to increase the roughness factor of the ZnO NW arrays (i.e. to increase the NW length) with the purpose of decreasing the absorber thickness, improving the light scattering, and consequently the light absorption in the ZnO/CdSe NW arrays. However, this strategy increased the recombination centers, which affected the efficiency of the solar cell. We developed another strategy that acts on the optical configuration of the solar cells by increasing the diameter of the ZnO NW (from 100 to 330 nm) while maintaining a low roughness factor. We observed that the scattering of the ZnO NW arrays occurred over a large wavelength range and extended closer to the CdSe absorber bandgap, and this led to an enhancement in the effective absorption of the ZnO/CdSe NW arrays and an increase in the solar cell characteristics. We found that the thicknesses of CuSCN above the ZnO/CdSe NW tips and the CdSe coating layer were optimized at 1.5 µm and 30 nm, respectively. Optimized ZnO/CdSe/CuSCN solar cells exhibiting 3.2% solar energy conversion efficiency were obtained by using 230 nm diameter ZnO NWs.

2.
Nano Lett ; 6(4): 640-50, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16608258

RESUMO

Four different types of solar cells prepared in different laboratories have been characterized by impedance spectroscopy (IS): thin-film CdS/CdTe devices, an extremely thin absorber (eta) solar cell made with microporous TiO2/In(OH)xSy/PbS/PEDOT, an eta-solar cell of nanowire ZnO/CdSe/CuSCN, and a solid-state dye-sensitized solar cell (DSSC) with Spiro-OMeTAD as the transparent hole conductor. A negative capacitance behavior has been observed in all of them at high forward bias, independent of material type (organic and inorganic), configuration, and geometry of the cells studied. The experiments suggest a universality of the underlying phenomenon giving rise to this effect in a broad range of solar cell devices. An equivalent circuit model is suggested to explain the impedance and capacitance spectra, with an inductive recombination pathway that is activated at forward bias. The deleterious effect of negative capacitance on the device performance is discussed, by comparison of the results obtained for a conventional monocrystalline Si solar cell showing the positive chemical capacitance expected in the ideal IS model of a solar cell.


Assuntos
Compostos de Cádmio/química , Fontes de Energia Elétrica , Eletroquímica/instrumentação , Modelos Químicos , Nanoestruturas/química , Sulfetos/química , Telúrio/química , Compostos de Cádmio/efeitos da radiação , Simulação por Computador , Cristalização/métodos , Capacitância Elétrica , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Teste de Materiais , Nanoestruturas/análise , Nanoestruturas/efeitos da radiação , Energia Solar , Sulfetos/efeitos da radiação , Telúrio/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA