Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Genet ; 68(1): 83-90, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34750687

RESUMO

The increase in multidrug-resistant pathogenic bacteria has become a problem worldwide. Currently there is a strong focus on the development of novel antimicrobials, including antimicrobial peptides (AMP) and antimicrobial antisense agents. While the majority of AMP have membrane activity and kill bacteria through membrane disruption, non-lytic AMP are non-membrane active, internalize and have intracellular targets. Antimicrobial antisense agents such as peptide nucleic acids (PNA) and phosphorodiamidate morpholino oligomers (PMO), show great promise as novel antibacterial agents, killing bacteria by inhibiting translation of essential target gene transcripts. However, naked PNA and PMO are unable to translocate across the cell envelope of bacteria, to reach their target in the cytosol, and are conjugated to bacteria penetrating peptides (BPP) for cytosolic delivery. Here, we discuss how non-lytic AMP and BPP-PMO/PNA conjugates translocate across the cytoplasmic membrane via receptor-mediated transport, such as the cytoplasmic membrane transporters SbmA, MdtM/YjiL, and/or YgdD, or via a less well described autonomous process.


Assuntos
Peptídeos Antimicrobianos , Ácidos Nucleicos Peptídicos , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Ácidos Nucleicos Peptídicos/metabolismo , Peptídeos/metabolismo
2.
Mol Microbiol ; 114(6): 906-919, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32458540

RESUMO

Initiation of Escherichia coli chromosome replication is controlled by the DnaA initiator protein. Both rifampicin-mediated inhibition of transcription and ppGpp-induced changes in global transcription stops replication at the level of initiation. Here, we show that continued DnaA protein synthesis allows for replication initiation both during the rifampicin treatment and during the stringent response when the ppGpp level is high. A reduction in or cessation of de novo DnaA synthesis, therefore, causes the initiation arrest in both cases. In accordance with this, inhibition of translation with chloramphenicol also stops initiations. The initiation arrest caused by rifampicin was faster than that caused by chloramphenicol, despite of the latter inhibiting DnaA accumulation immediately. During chloramphenicol treatment transcription is still ongoing and we suggest that transcriptional events in or near the origin, that is, transcriptional activation, can allow for a few extra initiations when DnaA becomes limiting. We suggest, for both rifampicin treated cells and for cells accumulating ppGpp, that a turn-off of initiation from oriC requires a stop in de novo DnaA synthesis and that an additional lack of transcriptional activation enhances this process, that is, leads to a faster initiation stop.


Assuntos
Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Guanosina Tetrafosfato/metabolismo , Rifampina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cloranfenicol/farmacologia , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Origem de Replicação , Estresse Fisiológico , Ativação Transcricional
3.
Curr Genet ; 67(6): 877-882, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34345967

RESUMO

Most organisms possess several cell cycle checkpoints to preserve genome stability in periods of stress. Upon starvation, the absence of chromosomal duplication in the bacterium Escherichia coli is ensured by holding off commencement of replication. During normal growth, accumulation of the initiator protein DnaA along with cell cycle changes in its activity, ensure that DNA replication starts only once per cell cycle. Upon nutrient starvation, the prevailing model is that an arrest in DnaA protein synthesis is responsible for the absence of initiation. Recent indications now suggest that DnaA degradation may also play a role. Here we comment on the implications of this potential new layer of regulation.


Assuntos
Cromossomos Bacterianos , Replicação do DNA , Metabolismo Energético , Escherichia coli/genética , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Genoma Bacteriano , Instabilidade Genômica
4.
J Antimicrob Chemother ; 76(11): 2802-2814, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450639

RESUMO

BACKGROUND: Antisense peptide nucleic acids (PNAs) constitute an alternative to traditional antibiotics, by their ability to silence essential genes. OBJECTIVES: To evaluate the antibacterial effects of antisense PNA-peptide conjugates that target the gene encoding the alpha subunit (NrdA) of the Escherichia coli ribonucleotide reductase (RNR). METHODS: Bacterial susceptibility of a series of NrdA-targeting PNAs was studied by MIC determination and time-kill analysis. Western-blot analysis, gene complementation and synergy with hydroxyurea were employed to determine the efficiency of NrdA-PNA antisense treatment. The effect on chromosome replication was addressed by determining the DNA synthesis rate, by flow cytometry analysis, by quantitative PCR and by fluorescence microscopy. The use of DNA repair mutants provided insight into the bactericidal action of NrdA-PNA. RESULTS: Treatment with NrdA-PNA specifically inhibited growth of E. coli, as well as NrdA protein translation at 4 µM. Also, the DNA synthesis rate was reduced, preventing completion of chromosome replication and resulting in formation of double-stranded DNA breaks and cell death. CONCLUSIONS: These data present subunits of the NrdAB RNR as a target for future antisense microbial agents and provide insight into the bacterial physiological response to RNR-targeting antimicrobials.


Assuntos
Ácidos Nucleicos Peptídicos , Ribonucleotídeo Redutases , Antibacterianos/farmacologia , DNA , Escherichia coli/genética , Ácidos Nucleicos Peptídicos/farmacologia , Ribonucleotídeo Redutases/genética
5.
PLoS Genet ; 13(1): e1006590, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129339

RESUMO

Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability.


Assuntos
Replicação do DNA , Metabolismo Energético , Escherichia coli/metabolismo , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b , Citocromos/genética , Citocromos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Origem de Replicação
6.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823798

RESUMO

Multidrug-resistant bacteria are a global health problem. One of the last-resort antibiotics against Gram-negative bacteria is the cyclic lipopeptide colistin, displaying a flexible linker with a fatty acid moiety. The aim of the present project was to investigate the effect on antimicrobial activity of introducing fatty acid moieties of different lengths and in different positions in a cyclic peptide, S3(B), containing a flexible linker. The lipidated analogues of S3(B) were synthesized by 9-fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis. Following assembly of the linear peptide by Fmoc solid-phase peptide synthesis, on-resin head-to-tail cyclization and fatty acid acylation were performed. The antimicrobial activity was determined against the ESKAPE pathogens, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. Furthermore, hemolytic activity was determined against human erythrocytes. A total of 18 cyclic lipopeptides were synthesized and characterized. It was found that introduction of fatty acids in positions next to the flexible linker was more strongly linked to antimicrobial activity. The fatty acid length altered the overall hydrophobicity, which was the driving force for both high antimicrobial and hemolytic activity. Peptides became highly hemolytic when carbon-chain length exceeded 10 (i.e., C10), overlapping with the optimum for antimicrobial activity (i.e., C8-C12). The most promising candidate (C8)5 showed antimicrobial activity corresponding to that of S3(B), but with an improved hemolytic profile. Finally, (C8)5 was further investigated in a time-kill experiment.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Acilação , Antibacterianos/síntese química , Ciclização , Ácidos Graxos/química , Hemólise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Lipopeptídeos/síntese química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-30509946

RESUMO

Commonly used antibiotics exert their effects predominantly on rapidly growing bacterial cells; yet, the growth dynamics taking place during infection in a complex host environment remain largely unknown. Hence, a means to measure in situ bacterial growth rate is essential to predict the outcome of antibacterial treatment. We have recently validated chromosome replication as a readout of in situ bacterial growth rate during Escherichia coli infection in the mouse peritonitis model. By the use of two complementary methods (quantitative PCR and fluorescence microscopy) for differential genome origin and terminus copy number quantification, we demonstrated the ability to track bacterial growth rate, both on a population average level and on a single-cell level, from one single biological specimen. Here, we asked whether the in situ growth rate predicts antibiotic treatment effect during infection in the same model. Parallel in vitro growth experiments were conducted as a proof of concept. Our data demonstrate that the activities of the commonly used antibiotics ceftriaxone and gentamicin correlated with pretreatment bacterial growth rate; both drugs performed better during rapid growth than during slow growth. Conversely, ciprofloxacin was less sensitive to bacterial growth rate, both in a homogenous in vitro bacterial population and in a more heterogeneous in vivo bacterial population. The method serves as a platform to test any antibiotic's dependency on active in situ bacterial growth. Improved insight into this relationship in vivo could ultimately prove helpful in evaluating future antibacterial strategies.


Assuntos
Antibacterianos/uso terapêutico , Ceftriaxona/uso terapêutico , Ciprofloxacina/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Gentamicinas/uso terapêutico , Peritonite/tratamento farmacológico , Animais , Modelos Animais de Doenças , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Camundongos , Peritonite/microbiologia
8.
Biopolymers ; 110(6): e23275, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30951211

RESUMO

Escherichia coli is the main etiological agent of urinary trait infections, able to form biofilms in indwelling devices, resulting in chronic infections which are refractory to antibiotics treatment. In this study, we investigated the antimicrobial and anti-biofilm properties exerted against E. coli ATCC 25922, by a set of peptoids and peptides modeled upon the peptide GN-2, previously reported as a valid antimicrobial agent. The putative antimicrobials were designed to evaluate the effect of cationicity, hydrophobicity and their partitioning on the overall properties against planktonic cells and biofilms as well as on LPS binding, permeabilization of Gram-negative bacteria membranes and hemolysis. The data demonstrated that peptides are stronger antimicrobials than the analogue peptoids which in return have superior anti-biofilm properties. In this study, we present evidence that peptides antimicrobial activity correlates with enhanced LPS binding and hydrophobicity but is not affected by partitioning. The data demonstrated that the enhanced anti-biofilm properties of the peptoids are associated with decreased hydrophobicity and increased penetration of the inner membrane, compared to that of their peptide counterpart, suggesting that the characteristic flexibility of peptoids or their lack of H-bonding donors in their backbone, would play a role in their ability to penetrate bacterial membranes.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Peptídeos/química , Peptoides/química , Sequência de Aminoácidos , Antibacterianos/química , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/metabolismo , Biofilmes/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Escherichia coli/fisiologia , Hemólise/efeitos dos fármacos , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/farmacologia , Peptoides/síntese química , Peptoides/farmacologia , Permeabilidade/efeitos dos fármacos , Estrutura Secundária de Proteína , Relação Quantitativa Estrutura-Atividade
9.
PLoS Genet ; 12(9): e1006286, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27589233

RESUMO

Chromosome replication in Escherichia coli is in part controlled by three non-coding genomic sequences, DARS1, DARS2, and datA that modulate the activity of the initiator protein DnaA. The relative distance from oriC to the non-coding regions are conserved among E. coli species, despite large variations in genome size. Here we use a combination of i) site directed translocation of each region to new positions on the bacterial chromosome and ii) random transposon mediated translocation followed by culture evolution, to show genetic evidence for the importance of position. Here we provide evidence that the genomic locations of these regulatory sequences are important for cell cycle control and bacterial fitness. In addition, our work shows that the functionally redundant DARS1 and DARS2 regions play different roles in replication control. DARS1 is mainly involved in maintaining the origin concentration, whether DARS2 is also involved in maintaining single cell synchrony.


Assuntos
Cromossomos Bacterianos/genética , Replicação do DNA/genética , Evolução Molecular Direcionada , Proteínas de Escherichia coli/genética , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Aptidão Genética , Genoma Bacteriano/genética , Genômica , Sequências Reguladoras de Ácido Nucleico/genética , Origem de Replicação/genética
10.
Molecules ; 24(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847173

RESUMO

The increasing emergence of multi-drug resistant bacteria is a serious threat to public health worldwide. Antimicrobial peptides have attracted attention as potential antibiotics since they are present in all multicellular organisms and act as a first line of defence against invading pathogens. We have previously identified a small all-d antimicrobial octapeptide amide kk(1-nal)fk(1-nal)k(nle)-NH2 (D2D) with promising antimicrobial activity. In this work, we have performed a structure-activity relationship study of D2D based on 36 analogues aimed at discovering which elements are important for antimicrobial activity and toxicity. These modifications include an alanine scan, probing variation of hydrophobicity at lys5 and lys7, manipulation of amphipathicity, N-and C-termini deletions and lys-arg substitutions. We found that the hydrophobic residues in position 3 (1-nal), 4 (phe), 6 (1-nal) and 8 (nle) are important for antimicrobial activity and to a lesser extent cationic lysine residues in position 1, 2, 5 and 7. Our best analogue 5, showed MICs of 4 µg/mL against A. baumannii, E. coli, P. aeruginosa and S. aureus with a hemolytic activity of 47% against red blood cells. Furthermore, compound 5 kills bacteria in a concentration-dependent manner as shown by time-kill kinetics. Circular dichroism (CD) spectra of D2D and compounds 1-8 showed that they likely fold into α-helical secondary structure. Small angle x-ray scattering (SAXS) experiments showed that a random unstructured polymer-like chains model could explain D2D and compounds 1, 3, 4, 6 and 8. Solution structure of compound 5 can be described with a nanotube structure model, compound 7 can be described with a filament-like structure model, while compound 2 can be described with both models. Lipid interaction probed by small angle X-ray scattering (SAXS) showed that a higher amount of compound 5 (~50-60%) inserts into the bilayer compared to D2D (~30-50%). D2D still remains the lead compound, however compound 5 is an interesting antimicrobial peptide for further investigations due to its nanotube structure and minor improvement to antimicrobial activity compared to D2D.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Dicroísmo Circular , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Difração de Raios X
11.
Curr Genet ; 64(1): 71-79, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28664289

RESUMO

In Escherichia coli, like all organisms, DNA replication is coordinated with cell cycle progression to ensure duplication of the genome prior to cell division. Chromosome replication is initiated from the replication origin, oriC, by the DnaA protein associated with ATP. Initiations take place once per cell cycle and in synchrony at all cellular origins. DnaA also binds ADP with similar affinity as ATP and in wild-type cells the majority of DnaA molecules are ADP bound. In cells where the DnaAATP/DnaAADP ratio increases or in cells where DnaAATP has increased access to oriC, premature initiations take place, often referred to as overinitiation. Overinitiating cells are generally characterized by their slow growth and in the most severe cases lethal accumulation of DNA strand breaks. Here, we review the different strategies adopted by E. coli to survive overinitiation. We propose a unifying model where all mutations that suppress overinitiation keep replication forks separated in time and, thereby, reduce the formation of strand breaks. One group of mutations does so by lowering the activity of oriC and/or DnaA to reduce the frequency of initiations to an acceptable level. In the other group of mutations, replication forks are kept apart by preventing formation of damages that would otherwise cause replication blocks, by allowing bypass of replication blocks and/or by slowing down replication forks. This group of suppressors restores viability despite excessive chromosome replication and provides new insights into mechanisms that safeguard DNA integrity.


Assuntos
Cromossomos Bacterianos , Replicação do DNA , Escherichia coli/fisiologia , Viabilidade Microbiana/genética , Genoma Bacteriano , Instabilidade Genômica , Modelos Biológicos , Mutação
12.
J Antimicrob Chemother ; 73(2): 414-424, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092042

RESUMO

Objectives: To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. Methods: We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time-kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. Results: The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Conclusions: Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Biofilmes/efeitos dos fármacos , Sinergismo Farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Polimixinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
13.
J Pept Sci ; 24(7): e3080, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29737589

RESUMO

Staphylococcus epidermidis is a common nosocomial pathogen able to form biofilms in indwelling devices, resulting in chronic infections, which are refractory to antibiotics treatment. Staphylococcal biofilms are also associated with the delayed reepithelization and healing of chronic wounds. The human cathelicidin peptide LL-37 has been proven active against S. epidermidis biofilms in vitro and to promote wound healing. As previous studies have demonstrated that fragments of LL-37 could possess an equal antibacterial activity as the parent peptide, we tested whether shorter (12-mer) synthetic fragments of LL-37 maintained the antibiofilm and/or immune modulating activity, aiming at the identification of essential regions within the LL-37 parent sequence. Three fragments of LL-37 displayed improved activity against S. epidermidis in terms of biofilm inhibition and eradication, a reduced cytotoxicity to human keratinocytes and erythrocytes. In addition, KR-12 and VQ-12V26 enhanced wound healing potential, relative to LL37. FK-12 and KR-12 are truncated version of the cathelicidin, previously reported as valid antimicrobials, whereas VQ-12V26 is a single substituted LL-37 fragment. Remarkably, the single substitution aspartic acid to valine in position 26 caused gain of antimicrobial function in the inactive VQ-12 fragment. The combination of antibiofilm, wound healing potential, and low cytotoxicity makes KR-12 and VQ-12V26 promising therapeutic agents and lead compounds for further improvement and understanding of antibiofilm and wound healing properties.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus epidermidis/crescimento & desenvolvimento , Relação Estrutura-Atividade , Catelicidinas
14.
Curr Genet ; 63(4): 607-611, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27942832

RESUMO

Chromosome replication in Eubacteria is initiated by initiator protein(s) binding to specific sites within the replication origin, oriC. Recently, initiator protein binding to chromosomal regions outside the origin has attracted renewed attention; as such binding sites contribute to control the frequency of initiations. These outside-oriC binding sites function in several different ways: by steric hindrances of replication fork assembly, by titration of initiator proteins away from the origin, by performing a chaperone-like activity for inactivation- or activation of initiator proteins or by mediating crosstalk between chromosomes. Here, we discuss initiator binding to outside-oriC sites in a broad range of different taxonomic groups, to highlight the significance of such regions for regulation of bacterial chromosome replication. For Escherichia coli, it was recently shown that the genomic positions of regulatory elements are important for bacterial fitness, which, as we discuss, could be true for several other organisms.


Assuntos
Cromossomos Bacterianos/genética , Replicação do DNA/genética , Sequências Reguladoras de Ácido Nucleico , Origem de Replicação/genética , Sítios de Ligação , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética
15.
Antimicrob Agents Chemother ; 60(9): 5427-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27381394

RESUMO

We used the fruit fly Drosophila melanogaster as a cost-effective in vivo model to evaluate the efficacy of novel antibacterial peptides and peptoids for treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. A panel of peptides with known antibacterial activity in vitro and/or in vivo was tested in Drosophila Although most peptides and peptoids that were effective in vitro failed to rescue lethal effects of S. aureus infections in vivo, we found that two lantibiotics, nisin and NAI-107, rescued adult flies from fatal infections. Furthermore, NAI-107 rescued mortality of infection with the MRSA strain USA300 with an efficacy equivalent to that of vancomycin, a widely applied antibiotic for the treatment of serious MRSA infections. These results establish Drosophila as a useful model for in vivo drug evaluation of antibacterial peptides.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/microbiologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Testes de Sensibilidade Microbiana , Nisina/farmacologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/mortalidade , Análise de Sobrevida
16.
Antimicrob Agents Chemother ; 60(1): 592-9, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26574005

RESUMO

Multiple strains of Acinetobacter baumannii have developed multidrug resistance (MDR), leaving colistin as the only effective treatment. The cecropin-α-melittin hybrid BP100 (KKLFKKILKYL-NH2) and its analogs have previously shown activity against a wide array of plant and human pathogens. In this study, we investigated the in vitro antibacterial activities of 18 BP100 analogs (four known and 14 new) against the MDR A. baumannii strain ATCC BAA-1605, as well as against a number of other clinically relevant human pathogens. Selected peptides were further evaluated against strains of A. baumannii that acquired resistance to colistin due to mutations of the lpxC, lpxD, pmrA, and pmrB genes. The novel analogue BP214 showed antimicrobial activity at 1 to 2 µM and a hemolytic 50% effective concentration (EC50) of >150 µM. The lower activity of its enantiomer suggests a dual, specific and nonspecific mode of action. Interestingly, colistin behaved antagonistically to BP214 when pmrAB and lpxC mutants were challenged.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Oligopeptídeos/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Antibacterianos/síntese química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Eritrócitos/efeitos dos fármacos , Expressão Gênica , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Oligopeptídeos/síntese química , Técnicas de Síntese em Fase Sólida , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
BMC Microbiol ; 16: 63, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27067536

RESUMO

BACKGROUND: Escherichia coli is the most common cause of urinary tract infection (UTI). The pathogenic isolates are becoming increasingly resistant to antibiotics; with a worldwide dissemination of resistant sequence types (ST). We characterized three different uropathogenic E. coli populations, from non-hospitalized patients to describe the genetic kinship between resistant and susceptible isolates. We studied the populations by use of multi-locus sequence typing (MLST) and abbreviated-multi locus variable number of tandem repeat analysis (a-MLVA). Urine samples submitted for testing, by general practitioners, were identified at Dept. of Clinical Microbiology at Hvidovre Hospital, Denmark, from Oct. 2011 to July 2012. We included 94 fully susceptible, 94 resistant (non-ESBL) and 98 Extended Spectrum Beta-lactamases- (ESBL)-producing E. coli isolates. RESULTS: The ESBL population was dominated vastly by ST131 (51 %), ST38 (9 %) and ST69 (6 %). In the resistant group ST69 (18 %), ST73 (11 %) and ST131 (15 %) were the largest clusters. In the susceptible population more STs and a-MLVA codes were identified compared to the other groups and ST73 and ST95 were found as the only clusters with 16 % and 6 %, respectively. Ninety-eight per cent of the ESBL-producing E. coli isolates were CTX-M-producers. CONCLUSION: ST131 dominated the population of community-associated uropathogenic ESBL-producing E. coli, but was less frequent among non-ESBL-producing E. coli. The fully susceptible E. coli population was a much more diverse group than the resistant and ESBL-producing E. coli populations. Overall, these findings suggest that dominant ESBL-producing lineages are derived from UPEC lineages already established in the general UPEC population.


Assuntos
Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana/métodos , Tipagem de Sequências Multilocus/métodos , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/efeitos dos fármacos , Infecções Comunitárias Adquiridas/microbiologia , DNA Bacteriano/genética , Humanos , Repetições Minissatélites , Filogenia , Urina/microbiologia , Escherichia coli Uropatogênica/genética , Resistência beta-Lactâmica
18.
Nucleic Acids Res ; 42(21): 13228-41, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25389264

RESUMO

In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance of fragmented chromosomes and a decrease in terminus concentration, leading to a dramatic increase in ori/ter ratio and cessation of cell growth. Aerobic viability was restored by reducing the level of reactive oxygen species (ROS) or by deleting mutM (Fpg glycosylase). The double-strand breaks observed in hyperinitiating cells therefore results from replication forks encountering single-stranded DNA lesions generated while removing oxidized bases, primarily 8-oxoG, from the DNA. We conclude that there is a delicate balance between chromosome replication and ROS inflicted DNA damage so the number of replication forks can only increase when ROS formation is reduced or when the pertinent repair is compromised.


Assuntos
Dano ao DNA , Replicação do DNA , Escherichia coli/genética , Estresse Oxidativo , Adenosina Trifosfatases/genética , Aerobiose , Anaerobiose , Cromossomos Bacterianos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Bacteriano/química , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Viabilidade Microbiana , Mutação
19.
Antimicrob Agents Chemother ; 58(10): 6139-44, 2014 10.
Artigo em Inglês | MEDLINE | ID: mdl-25092712

RESUMO

The ability of different antibiotics to select for extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli remains a topic of discussion. In a mouse intestinal colonization model, we evaluated the selective abilities of nine common antimicrobials (cefotaxime, cefuroxime, dicloxacillin, clindamycin, penicillin, ampicillin, meropenem, ciprofloxacin, and amdinocillin) against a CTX-M-15-producing E. coli sequence type 131 (ST131) isolate with a fluoroquinolone resistance phenotype. Mice (8 per group) were orogastrically administered 0.25 ml saline with 10(8) CFU/ml E. coli ST131. On that same day, antibiotic treatment was initiated and given subcutaneously once a day for three consecutive days. CFU of E. coli ST131, Bacteroides, and Gram-positive aerobic bacteria in fecal samples were studied, with intervals, until day 8. Bacteroides was used as an indicator organism for impact on the Gram-negative anaerobic population. For three antibiotics, prolonged colonization was investigated with additional fecal CFU counts determined on days 10 and 14 (cefotaxime, dicloxacillin, and clindamycin). Three antibiotics (cefotaxime, dicloxacillin, and clindamycin) promoted overgrowth of E. coli ST131 (P < 0.05). Of these, only clindamycin suppressed Bacteroides, while the remaining two antibiotics had no negative impact on Bacteroides or Gram-positive organisms. Only clindamycin treatment resulted in prolonged colonization. The remaining six antibiotics, including ciprofloxacin, did not promote overgrowth of E. coli ST131 (P > 0.95), nor did they suppress Bacteroides or Gram-positive organisms. The results showed that antimicrobials both with and without an impact on Gram-negative anaerobes can select for ESBL-producing E. coli, indicating that not only Gram-negative anaerobes have a role in upholding colonization resistance. Other, so-far-unknown bacterial populations must be of importance for preventing colonization by incoming E. coli.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Andinocilina/farmacologia , Ampicilina/farmacologia , Animais , Cefotaxima/farmacologia , Cefuroxima/farmacologia , Ciprofloxacina/farmacologia , Clindamicina/farmacologia , Dicloxacilina/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Meropeném , Camundongos , Penicilinas/farmacologia , Tienamicinas/farmacologia
20.
Genome Res ; 21(8): 1388-93, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21555365

RESUMO

Whole-genome sequencing (WGS) with new short-read sequencing technologies has recently been applied for genome-wide identification of mutations. Genomic rearrangements have, however, often remained undetected by WGS, and additional analyses are required for their detection. Here, we have applied a combination of WGS and genome copy number analysis, for the identification of mutations that suppress the growth deficiency imposed by excessive initiations from the Escherichia coli origin of replication, oriC. The E. coli chromosome, like the majority of bacterial chromosomes, is circular, and DNA replication is initiated by assembling two replication complexes at the origin, oriC. These complexes then replicate the chromosome bidirectionally toward the terminus, ter. In a population of growing cells, this results in a copy number gradient, so that origin-proximal sequences are more frequent than origin-distal sequences. Major rearrangements in the chromosome are, therefore, readily identified by changes in copy number, i.e., certain sequences become over- or under-represented. Of the eight mutations analyzed in detail here, six were found to affect a single gene only, one was a large chromosomal inversion, and one was a large chromosomal duplication. The latter two mutations could not be detected solely by WGS, validating the present approach for identification of genomic rearrangements. We further suggest the use of copy number analysis in combination with WGS for validation of newly assembled bacterial chromosomes.


Assuntos
Cromossomos Bacterianos/genética , Escherichia coli/genética , Rearranjo Gênico , Genoma Bacteriano , Mutação , Mapeamento Cromossômico , Replicação do DNA , Evolução Molecular , Dosagem de Genes , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA