Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328688

RESUMO

The tomato leaf miner (Tuta absoluta) is one of the top 20 plant pests worldwide. We cloned and identified the chromatin-remodelling ATPase genes ISWI and BRM by RACE and bioinformatic analysis, respectively; used RT-qPCR to examine their expression patterns during different life cycle stages; and elucidated their roles in insect reproduction using double-stranded RNA injections. The full-length cDNA of TaISWI was 3428 bp and it encoded a 1025-aa polypeptide. The partial-length cDNA of TaBRM was 3457 bp and it encoded a 1030-aa polypeptide. TaISWI and TaBRM were upregulated at the egg stage. Injection of TaISWI or TaBRM dsRNA at the late pupa stage significantly inhibited adult ovary development and reduced fecundity, hatchability, and longevity in the adult females. To the best of our knowledge, the present study was the first to perform molecular characterisations of two chromatin-remodelling ATPase genes and clarify their roles in T. absoluta fecundity. Chromatin-remodelling ATPases are potential RNAi targets for the control of T. absoluta and other insect pests. The present study was also the first to demonstrate the feasibility of reproductive inhibitory RNAi as a putative approach for the suppression of T. absoluta and other Lepidopteran insect populations.


Assuntos
Lepidópteros , Mariposas , Solanum lycopersicum , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , DNA Complementar/metabolismo , Feminino , Larva/metabolismo , Lepidópteros/genética , Solanum lycopersicum/genética , Mariposas/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Reprodução
2.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281211

RESUMO

To reveal the mechanism of temperature preference in Tuta absoluta, one of the top 20 plant pests in the world, we cloned and identified TaTRPA1, TaPain, and TaPyx genes by RACE and bioinformatic analysis, and clarified their expression profiles during different development stages using real-time PCR, and revealed their function in preference temperature by RNAi. The full-length cDNA of TaPain was 3136 bp, with a 2865-bp open reading frame encoding a 259.89-kDa protein; and the partial length cDNA of TaPyx was 2326-bp, with a 2025-bp open reading frame encoding a 193.16-kDa protein. In addition, the expression of TaTRPA1 and TaPyx was significantly lower in larvae than other stages, and it was significantly higher in pupae and newly emerging males for TaPain. After feeding target double-stranded RNA (dsRNA), the preferred temperature decreased 2 °C more than the control group. In conclusion, the results firstly indicated the molecular characterization of TRPA subfamily genes and their key role in temperature perception in T. absoluta, and the study will help us to understand the temperature-sensing mechanism in the pest, and will provide some basis for study of other Lepidoptera insects' temperature preference. Moreover, it is of great significance in enriching the research progress of "thermos TRP".


Assuntos
Mariposas/genética , Canal de Cátion TRPA1/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Comportamento Animal , Feminino , Larva/metabolismo , Masculino , Mariposas/metabolismo , Pupa/metabolismo , Temperatura
3.
J Insect Sci ; 14: 124, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368068

RESUMO

The invasive Mediterranean Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) has emerged as one of the most common agricultural pests in the world. In the present study, we examined the cross-tolerance, fitness costs, and benefits of thermal tolerance and the variation in the responses of life history traits after heat-shock selection. The results showed that survival and longevity of Mediterranean B. tabaci were decreased significantly after direct or cross temperature stress and that the number of eggs per female was not reduced significantly. Furthermore, heat-shock selection dramatically increased the survival of Mediterranean B. tabaci within two generations, and it did not significantly affect the egg number per female within five generations. These results indicated that there was a trade-off between survival, longevity, and reproduction in Mediterranean B. tabaci after temperature stress. The improvement in reproduction was costly in terms of decreased survival and longevity, and there was a fitness consequence to temperature stress. In addition, heat tolerance in Mediterranean B. tabaci increased substantially after selection by heat shock, indicating a considerable variation for survival tolerance in this species. This information could help us better understand the thermal biology of Mediterranean B. tabaci within the context of climate change.


Assuntos
Hemípteros/fisiologia , Temperatura , Animais , Feminino , Fertilidade , Longevidade/fisiologia , Solanum lycopersicum/parasitologia , Masculino , Reprodução/fisiologia , Estresse Fisiológico
4.
J Insect Sci ; 14: 143, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25347834

RESUMO

With increasing global climate change, analyses of stress-inducing conditions have important significance in ecological adaptation and the biological distribution of species. To reveal the difference in temperature-adaptive strategy between Turpan and Beijing populations of Bemisia tabaci (Gennadius) Middle East Asia Minor 1 (MEAM1) under high-temperature stress conditions, we compared thermal tolerance and life history traits between Beijing and Turpan populations of MEAM1 after exposure to different heat shock treatments for different times. The experimental design reflected the nature of heat stress conditions suffered by MEAM1. The results showed that eggs, red-eyed pupae, and adults of the Turpan population were more heat tolerant than those of the Beijing population under the same stress conditions. Additionally, it was found that longevity and F1 adult survival rate were significantly higher in the Turpan population than in the Beijing population after heat shock stress, but egg number and F1 female ratio were not significantly different between Turpan population and Beijing population. Overall, it was suggested that heat tolerance and longevity traits were the most relevant for climate characteristics and not reproductive traits, and improved heat tolerance and prolonged longevity were important adaptive strategies that helped MEAM1 to survive in harsh high-temperature conditions such as Turpan arid desert climate. The present results provided further insight into the modes of heat tolerance and the ways in which survival and longevity traits respond to environmental selection pressures.


Assuntos
Hemípteros/fisiologia , Aclimatação , Animais , Evolução Biológica , China , Clima Desértico , Meio Ambiente , Feminino , Temperatura Alta , Estágios do Ciclo de Vida/fisiologia , Longevidade , Masculino , Reprodução
5.
Int J Biol Macromol ; 265(Pt 1): 130636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467214

RESUMO

In insects, vision is crucial in finding host plants, but its role in nocturnal insects is largely unknown. Vision involves responses to specific spectra of photon wavelengths and opsins plays an important role in this process. Long-wavelength sensitive opsin (LW opsin) and blue-sensitive opsin (BL opsin) are main visual opsin proteins and play important in behavior regulation.We used CRISPR/Cas9 technology to mutate the long-wavelength-sensitive and blue wavelength-sensitive genes and explored the role of vision in the nocturnal invasive pest Tuta absoluta. Light wave experiments revealed that LW2(-/-) and BL(-/-) mutants showed abnormal wavelength tropism. Both LW2 and BL mutations affected the preference of T. absoluta for the green environment. Mutations in LW2 and BL are necessary to inhibit visual attraction. The elimination of LW2 and BL affected the preference of leaf moths for green plants, and mutations in both induced a preference in moths for white plants. Behavioral changes resulting from LW2(-/-) and BL(-/-) mutants were not affected by sense of smell, further supporting the regulatory role of vision in insect behavior. To the best of our knowledge, this is the first study to reveal that vision, not smell, plays an important role in the host-seeking behavior of nocturnal insects at night, of which LW2 and BL opsins are key regulatory factors. These study findings will drive the development of the "vision-ecology" theory.


Assuntos
Visão de Cores , Mariposas , Animais , Opsinas/genética , Opsinas/metabolismo , Espécies Introduzidas , Mariposas/genética , Mariposas/metabolismo , Insetos/metabolismo
6.
Genes (Basel) ; 14(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37239372

RESUMO

Exposure to extreme temperatures can hinder the development of insects and even reduce their survival rate. However, the invasive species Bemisia tabaci exhibits an impressive response to different temperatures. This study aims to identify important transcriptional changes of B. tabaci occupying different temperature habitats by performing RNA sequencing on populations originating from three regions of China. The results showed that the gene expression of B. tabaci populations inhabiting regions with different temperatures was altered and identified 23 potential candidate genes that respond to temperature stress. Furthermore, three potential regulatory factors' (the glucuronidation pathway, alternative splicing, and changes in the chromatin structure) response to different environmental temperatures were identified. Among these, the glucuronidation pathway is a notable regulatory pathway. A total of 12 UDP-glucuronosyltransferase genes were found in the transcriptome database of B. tabaci obtained in this study. The results of DEGs analysis suggest that UDP-glucuronosyltransferases with a signal peptide may help B. tabaci resist temperature stress by sensing external signals, such as BtUGT2C1 and BtUGT2B13, which are particularly important in responding to temperature changes. These results will provide a valuable baseline for further research on the thermoregulatory mechanisms of B. tabaci that contributes to its ability to effectively colonize regions with considerable temperature differences.


Assuntos
Perfilação da Expressão Gênica , Hemípteros , Animais , Temperatura , Transcriptoma/genética , Sequência de Bases , Hemípteros/metabolismo , Difosfato de Uridina/metabolismo
7.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2267-2273, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681391

RESUMO

As a vulnerable species identified by the International Union for Conservation of Nature (IUCN), Lepidochelys olivacea has attracted extensive attention in recent years. To examine its current distribution and that under future climate change scenarios, we compiled the occurrence data of L. olivacea. With eight predictor variables, including depth, offshore distance, mean primary productivity, minimum primary productivity, mean sea surface temperature, minimum sea surface temperature, mean sea surface salinity, and minimum sea surface salinity, we predicted its distribution in an ensemble species distribution model. The accuracy of the model was evaluated with the parameters of areas under curves (AUC) and true skill statistics (TSS). The results showed that the AUC and TSS values were 0.96 and 0.81, respectively, indicating a good predictive performance of the ensemble model. Sea surface temperature and salinity were the two most important variables determining the distribution of L. olivacea, with the suitable temperature ranging from 23 to 29 ℃ and salinity below 34. The current distribution range of L. olivacea was between 30° N-25° S. Under future climate scenarios, its distribution range would decrease, especially under the RCP85 scenario in the 2100s (with a 28% reduction in the suitable survival range). The results of model validation showed that it had high accuracy and could make accurate predictions of the distribution. This study would provide references for the development of more rational conservation measures and management strategies.


Assuntos
Mudança Climática , Salinidade , Temperatura
8.
Front Physiol ; 13: 865172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669578

RESUMO

As an invasive species, Bemisia tabaci Mediterranean (MED) has notable potential to adapt to a wide range of environmental temperatures, which enables it to successfully spread after invasion and occupy habitats over a wide latitude range. It has been postulated that chromatin remodeling mechanisms are related to the rapid acquisition of adaptive traits and thermal resistance in invasive species; however, relevant experimental evidence is scarce. To identify the molecular characteristics and assess the role of chromatin remodelers in thermal stress within invasive MED and native Asia II 1 of the B. tabaci species complex, we identified 13 switching defective/sucrose non-fermenting (SWI/SNF) and 10 imitation switch (ISWI) family members in the B. tabaci genome, analyzed their molecular characteristics and structures, and identified key mutation sites between MED and Asia II 1, then cloned the catalytic subunits, and revealed the difference in thermal tolerance function. The results showed that the expression levels of Bt-BRM-1 and Bt-BRM-2 were significantly higher in MED than in Asia II 1 during heat stress, and Bt-BRM-2 expression was significantly higher during cold stress. In addition, RNA interference results indicated that the two target genes had similar temperature tolerance function in the both two cryptic species. This study is the first to identify and analyze the molecular characteristics of SWI/SNF and ISWI family members and reveal their potential key roles in temperature tolerance in poikilothermic ectotherms. The results will assist in understanding the underlying temperature adaptation mechanism of invasive insects and will enrich stress adaptation research systems from an epigenetic perspective.

9.
Front Genet ; 13: 865622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664294

RESUMO

The tomato leaf miner Tuta absoluta (Meyrick) is one of the world's most destructive pests of tomato, and because of its severe economic impacts, as well as the development of pesticide resistance, the species has been intensively studied, especially in regard to the identification of targets for T. absoluta control. However, functional genomic studies of T. absoluta have been constrained by a lack of effective genetic tools. Therefore, the aim of the present study was to develop a CRISPR/Cas9 zygote microinjection protocol for generating heritable mutations in T. absoluta, using the ommochrome synthesis gene cinnabar as an easily evaluated target gene. The injection of fertilised eggs with Cas9 protein and four sgRNAs, which targeted cinnabar exon 3, resulted in a mutagenesis rate of 31.9% for eggs reaching adulthood, and cinnabar mutagenesis resulted in either red or mosaic eye colour phenotypes. As such, this study is the first to report a complete and detailed CRISPR/Cas9 workflow for the efficient genome editing of the globally important invasive pest T. absoluta. The application of this robust genome-editing tool to T. absoluta will greatly facilitate the discovery of suitable RNAi control targets and the subsequent development of novel control strategies.

10.
J Exp Biol ; 214(Pt 5): 764-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21307062

RESUMO

The whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) biotype B, is one of the most destructive invasive pests of field and glasshouse crops, and has a high tolerance to heat. Our previous work found that whitefly females are more heat tolerant than males. In the present study, real-time PCR and double-stranded RNA (dsRNA) methods were used to explore the role of heat shock protein (Hsp) genes in whitefly of both sexes; this provided further evidence of the mechanism underlying the differential heat tolerance abilities of females and males. The results showed that both hsp23 and hsp70 mRNA expression levels were higher in females than in males from 37.5 to 42°C, while at the extreme temperature of 44°C the hsp70 mRNA level was higher in males than in females. There was no significant difference in hsp90 mRNA expression between females and males under heat shock conditions. Furthermore, the survival rate of females fed hsp23 or hsp70 dsRNA significantly decreased following heat shock at 44°C for 1 h, but male survival rate was not significantly affected. Additionally, the survival rate of both females and males showed no significant change after they were fed with hsp90 dsRNA. Collectively, the present study shows that the optimum mRNA expression of Hsp genes in females promotes a higher survival rate under heat shock conditions; hsp23 and hsp70 play a key role for heat tolerance in females but not in males, and hsp90 shows no significant role in heat tolerance in either females or males. Further, our study indicates that feeding with dsRNA is an effective method by which to study gene function, and the simplicity of this approach opens the way for further research on gene function in different sexes and diverse groups of species.


Assuntos
Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Hemípteros/genética , Proteínas de Insetos/genética , Animais , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Hemípteros/fisiologia , Masculino , Reação em Cadeia da Polimerase , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , Fatores Sexuais
11.
Zool Res ; 42(5): 660-665, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34472227

RESUMO

Flatheads are valuable commercial fish species endemic to the Indo-West Pacific. Due to their economic value and unique biological traits, such as metamorphosis and camouflage, they serve as ideal marine organisms for studies on demersal adaptation and evolution. The brown-spotted flathead (Platycephalus sp.1) is the most widely distributed in the northwestern Pacific. Despite the lack of a valid scientific name, it has been long recognized and exploited in the marine fisheries of China, Japan, and Korea. In the current study, we applied Illumina, PacBio, and Hi-C sequencing to assemble a chromosome-scale genome for this species. The assembled genome was 660.63 Mb long with a scaffold N50 of 28.65 Mb and 100% of the contigs were anchored onto 24 chromosomes. We predicted 22 743 protein-coding genes, 94.8% of which were functionally annotated. Comparative genomic analyses suggested that Platycephalus sp.1 diverged from its common ancestor with Gasterosteus aculeatus ~88.4 million years ago. The expanded gene families were significantly enriched in immune, biosynthetic, and metabolic pathways. Furthermore, three shared Gene Ontology terms and 377 common positively selected genes were identified between flathead and flatfish species, suggesting that these genes may contribute to demersal adaptation in flatheads. The assembled genomic data provide a valuable molecular resource for further research on the biological and adaptive evolution of flathead species.


Assuntos
Adaptação Fisiológica/genética , Cromossomos/genética , Peixes/genética , Genoma , Genômica/métodos , Animais , Oceano Pacífico , Filogenia
12.
Insects ; 11(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050711

RESUMO

Invasive species often encounter rapid environmental changes during invasions and only the individuals that successfully overcome environmental stresses can colonize and spread. Chromatin remodeling may be essential in environmental adaptation. To assess the functions of imitation switch (ISWI) in invasive Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) cryptic species, we cloned and characterized the MEAM1 BtISWI gene and determined its functions in response to thermal stress. The full-length cDNA of BtISWI was 3712 bp, with a 3068 bp open reading frame (ORF) encoding a 118.86 kDa protein. BtISWI mRNA expression was significantly up-regulated after exposure to heat shock or cold shock conditions, indicating that BtISWI expression can be induced by thermal stress. After feeding double-stranded RNA (dsRNA), specifically for BtISWI, resistance to both heat and cold decreased significantly, suggesting that BtISWI may function directly in the thermal tolerance of MEAM1. Moreover, the preferred temperature of MEAM1 adults fed dsRNA was 1.9-3.5 °C higher than the control groups. Taken together, our findings highlight the importance of epigenetic gene regulation in the thermal response or thermal adaptation of invasive Bemisia tabaci (B. tabaci), and provide a new potential target for establishing sustainable control strategies for B. tabaci.

13.
Mitochondrial DNA B Resour ; 4(2): 2191-2192, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33365469

RESUMO

The complete mitochondrial genome of the king penguin Aptenodytes patagonicus was firstly determined. The mitogenome is 17,477 bp in length and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and a control region. The total nucleotide composition is 31.0% A, 22.2% T, 33.1% C, and 13.8% G, with a total A + T content of 53.2%. The phylogenetic analysis demonstrates a close relationship between A. patagonicus and A. forsteri. These results provide fundamental information for further phylogeny and genetic studies on Aptenodytes genus.

14.
Environ Entomol ; 47(1): 204-209, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29304195

RESUMO

Anthropogenic climate change and global warming are expected to alter the geographic distribution and abundance of many ectothermic species, which will increase the invasion of new areas by exotic species. To survive in variable or fluctuating temperature conditions, insects require sensitive thermal sensory mechanisms to detect external thermal stimuli and induce the appropriate behavioral and physiological responses. TRPA, a thermal-activated transient receptor potential (TRP) family ion channel, is essential for thermotaxis in insects. Here, we investigated the potential role of BtTRPA in short-term and long-term thermal stress in Bemisia tabaci Mediterranean (Gennadius; Hemiptera: Aleyrodidae). We found that BtTRPA was mainly expressed in the head, where the antennae are located. Under short-term thermal stress, the BtTRPA gene was robustly expressed after exposure to acute low or high temperatures, BtTRPA expression reached the highest levels after exposure to 0°C for 3 h and 40°C for 5 h, but was relatively low after exposure to milder stimuli (12 and 35°C). These results demonstrated that BtTRPA could discriminate between innocuous and noxious temperature stimuli. Under long-term thermal stress, the highest expression level of BtTRPA occurred at G1 exposed to mild innocuous temperature of 21 and 31°C, along with BtTRPA sharply increased and peaked in adult females, implying that mild innocuous long-term thermal exposure could cause transgenerational expression effects to enhance the ability of offspring to cope with the same stress. This study demonstrates that the channel BtTRPA is important in temperature sensing and provides a molecular basis for thermosensation regulation in response to varied environmental temperature in B. tabaci Mediterranean.


Assuntos
Hemípteros/fisiologia , Canal de Cátion TRPA1/genética , Sensação Térmica/genética , Animais , Hemípteros/genética , Hemípteros/metabolismo , Temperatura Alta , Canal de Cátion TRPA1/metabolismo
15.
Ying Yong Sheng Tai Xue Bao ; 29(1): 300-308, 2018 Jan.
Artigo em Zh | MEDLINE | ID: mdl-29692040

RESUMO

This study analyzed the values of δ13C and δ15N by the application of stable isotope technique from the marine mammals (Phoca largha, Neophocaena asiaorientalis sunameri, Balaenoptera acutorostrata) and major biological species in Dalian marine area based on the animals collected due to stranding and death after bycatch from January, 2008 to June, 2017, and the fisheries resources investigation between autumn, 2016 and spring, 2017 in the same area. The trophic level was then calculated in order to establish the continuous trophic spectrum of the food web in Dalian marine area. The results showed that the value of δ15N ranged from 8.0‰ to 14.7‰ and the value of δ13C ranged from -21.1‰ to -16.7‰ of the food web in Dalian marine area. The major biological species could be categorized into three groups, namely primary consumer, secondary consumer and top predator. The analysis of δ15N revealed that the trophic level ranged from 2.63 to 4.59 for the major biological species. The trophic level of B. acutorostrata, N. asiaorientalis sunameri, P. largha, echinoderm, cephalopods, gastropod, bivalve, crustacean and fish were 3.16, 4.11, 4.25, 3.24-3.84, 3.81-3.93, 3.65-4.13, 2.63-3.15, 3.58-4.12 and 3.20-4.59, respectively. The characteristics of the trophic structure demonstrated that the primary consumer was bivalve, the secondary consumers were B. acutorostrata, cephalopods, Echinoderms, gastropod and crustacean, and top predators were N. asiaorientalis sunameri, P. largha and fish. The value of δ15N increased with the increase in the body length, indicating the feeding of N. asiaorientalis sunameri tended to be at a higher trophic level with the growth and feeding ability enhanced. This study established the continuous trophic spectrum of food web in Dalian marine area and would provide the information for the marine mammal and fisheries resources protection.


Assuntos
Isótopos de Carbono , Cetáceos , Cadeia Alimentar , Isótopos de Nitrogênio , Animais , China , Peixes
16.
PLoS One ; 12(3): e0173821, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28323834

RESUMO

The Bemisia tabaci Mediterranean (MED) cryptic species has been rapidly invading to most parts of the world owing to its strong ecological adaptability, which is considered as a model insect for stress tolerance studies under rapidly changing environments. Selection of a suitable reference gene for quantitative stress-responsive gene expression analysis based on qRT-PCR is critical for elaborating the molecular mechanisms of thermotolerance. To obtain accurate and reliable normalization data in MED, eight candidate reference genes (ß-act, GAPDH, ß-tub, EF1-α, GST, 18S, RPL13A and α-tub) were examined under various thermal stresses for varied time periods by using geNorm, NormFinder and BestKeeper algorithms, respectively. Our results revealed that ß-tub and EF1-α were the best reference genes across all sample sets. On the other hand, 18S and GADPH showed the least stability for all the samples studied. ß-act was proved to be highly stable only in case of short-term thermal stresses. To our knowledge this was the first comprehensive report on validation of reference genes under varying temperature stresses in MED. The study could expedite particular discovery of thermotolerance genes in MED. Further, the present results can form the basis of further research on suitable reference genes in this invasive insect and will facilitate transcript profiling in other invasive insects.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes de Insetos , Hemípteros/genética , Hemípteros/fisiologia , Espécies Introduzidas , Aclimatação/genética , Aclimatação/fisiologia , Algoritmos , Animais , Perfilação da Expressão Gênica/normas , Perfilação da Expressão Gênica/estatística & dados numéricos , Instabilidade Genômica , Aquecimento Global , Proteínas de Insetos/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico , Temperatura , Canais de Potencial de Receptor Transitório/genética
17.
Sci Rep ; 7(1): 3040, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596581

RESUMO

The Bemisia tabaci Mediterranean (MED) cryptic species has been rapidly invading most parts of the world owing to its strong ecological adaptability, particularly its strong resistance to temperature stress. Epigenetic mechanisms play important roles in mediating ecological plasticity. In particular, DNA methylation has been the focus of attempts to understand the mechanism of phenotypic plasticity. The relationship between temperature and DNA methylation and how it affects the adaptability of invasive insects remain unknown. To investigate the temperature resistance role of DNA methyltransferase 1 (Dnmt1) in MED, we cloned and sequenced BtDnmt1 homology and identified its functions under various temperature conditions. The full-length cDNA of MED BtDnmt1 homology was 5,958 bp and has a 4,287 bp open reading frame that encodes a 1,428-amino-acid protein. BtDnmt1 mRNA expression levels were significantly down-regulated after feeding with dsRNA. Furthermore, after feeding with dsBtDnmt1, the MED adults exhibited significantly higher mortality under temperature stress conditions than the controls, suggesting that MED BtDnmt1 homology plays an essential role in the temperature tolerance capacity of MED. Our data improve our understanding of the temperature resistance and temperature adaptability mechanisms that have allowed the successful invasion and colonization of various environments by this alien species.


Assuntos
Adaptação Biológica , DNA (Citosina-5-)-Metiltransferase 1/genética , Hemípteros/fisiologia , Temperatura , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Expressão Gênica , Hemípteros/classificação , Filogenia , Análise de Sequência de DNA , Estresse Fisiológico , Taxa de Sobrevida
18.
PLoS One ; 9(9): e108428, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254364

RESUMO

Temperature is an important factor in affecting population dynamics and diffusion distribution of organisms. Alien species can successfully invade and colonize to various temperature environments, and one of important reasons is that alien species have a strong resistance to stress temperature. Recently, researchers have focused on the mechanisms of temperature sensing to determine the sensing and regulation mechanisms of temperature adaptation. The transient receptor potential (TRP) is one of the key components of an organism's temperature perception system. TRP plays important roles in perceiving temperature, such as avoiding high temperature, low temperature and choosing the optimum temperature. To assess high temperature sensation and the heat resistance role of the TRP gene, we used 3' and 5' rapid-amplification of cDNA ends to isolate the full-length cDNA sequence of the TRP gene from Bemisia tabaci (Gennadius) MEAM1 (Middle East Asia Minor 1), examined the mRNA expression profile under various temperature conditions, and identified the heat tolerance function. This is the first study to characterize the TRP gene of invasive B. tabaci MEAM1 (MEAM1 BtTRP). The full-length cDNA of MEAM1 BtTRP was 3871 bp, and the open reading frames of BtTRP was 3501 bp, encoding 1166 amino acids. Additionally, the BtTRP mRNA expression level was significantly increased at 35°C. Furthermore, compared with control treatments, the survival rate of B. tabaci MEAM1 adults was significantly decreased under high temperature stress conditions after feeding with dsRNA BtTRP. Collectively, these results showed that MEAM1 BtTRP is a key element in sensing high temperature and plays an essential role in B. tabaci MEAM1 heat tolerance ability. Our data improved our understanding of the mechanism of temperature sensation in B. tabaci MEAM1 at the molecular level and could contribute to the understanding of the thermal biology of B. tabaci MEAM1 within the context of global climate change.


Assuntos
Adaptação Biológica , Hemípteros/fisiologia , Temperatura Alta , Espécies Introduzidas , Canais de Potencial de Receptor Transitório/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/química , DNA Complementar/genética , Expressão Gênica , Resposta ao Choque Térmico/genética , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , Alinhamento de Sequência , Estresse Fisiológico , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
19.
PLoS One ; 9(7): e103279, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054554

RESUMO

With advancing global climate change, the analysis of thermal tolerance and evolutionary potential is important in explaining the ecological adaptation and changes in the distribution of invasive species. To reveal the variation of heat resistance and evolutionary potential in the invasive Mediterranean cryptic species of Bemisia tabaci, we selected two Chinese populations-one from Harbin, N China, and one from Turpan, S China-that experience substantial heat and cold stress and conducted knockdown tests under static high- and low-temperature conditions. ANOVAs indicated significant effects of populations and sex on heat knockdown time and chill coma recovery time. The narrow-sense heritability (h2) estimates of heat tolerance based on a parental half-sibling breeding design ranged from 0.47 ± 0.03 to 0.51 ± 0.06, and the estimates of cold tolerance varied from 0.33 ± 0.07 to 0.36 ± 0.06. Additive genetic variances were significantly different from zero for both heat and cold tolerance. These results suggest that invasive B. tabaci Mediterranean cryptic species possesses a strong ability to respond to thermal selection and develops rapid resistance to climate change.


Assuntos
Aclimatação , Hemípteros/fisiologia , Animais , Evolução Biológica , China , Mudança Climática , Feminino , Variação Genética , Hemípteros/genética , Espécies Introduzidas , Masculino , Temperatura
20.
Artigo em Inglês | MEDLINE | ID: mdl-20494845

RESUMO

Bemisia tabaci (Insecta, Hemiptera, Aleyrodidae) females are more heat resistant than males, which has important ecological significance in adaptation and expansion of B. tabaci populations. Differentially expressed genes between 25 degrees C and 44 degrees C were identified by Suppression Subtractive Hybridization (SSH) in B. tabaci sexes. 50 and 83 differentially expressed Expression Sequence Tags (ESTs) were obtained from female and male libraries, respectively. The ESTs have four functional categories. The frequency of heat stress-related ESTs, metabolism-related ESTs and new ESTs was higher in males than females. However, the percentage of ESTs with unclassified functions was higher in females than males. Furthermore, three differentially expressed genes were further examined by real-time PCR. The results suggested that difference of heat-resistance under heat-shock condition was associated with differentially expressed genes in B. tabaci sexes, which might enable us to better understand the mechanism behind this ecologically important trait.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA