Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 33(12): 3033-3041, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27512111

RESUMO

Myoglobin is a respiratory protein that serves as a model system in a variety of biological fields. Its main function is to deliver and store O2 in the heart and skeletal muscles, but myoglobin is also instrumental in homeostasis of nitric oxide (NO) and detoxification of reactive oxygen species (ROS). Almost every vertebrate harbors a single myoglobin gene; only some cyprinid fishes have two recently duplicated myoglobin genes. Here we show that the West African lungfish Protopterus annectens has at least seven distinct myoglobin genes (PanMb1-7), which diverged early in the evolution of lungfish and showed an enhanced evolutionary rate. These myoglobins are lungfish specific, and no other globin gene was found amplified. The myoglobins are differentially expressed in various lungfish tissues, and the brain is the main site of myoglobin expression. The typical myoglobin-containing tissues, the skeletal muscle and the heart, have much lower myoglobin mRNA levels. Muscle and heart express distinct myoglobins (PanMb1 and PanMb3, respectively). In cell culture, lungfish myoglobins improved cellular survival under hypoxia albeit with different efficiencies and reduced the production of reactive oxygen species. Only Mb2 and Mb6 enhanced the energy status of the cells. The unexpected diversity of myoglobin hints to a functional diversification of this gene: some myoglobins may have adapted to the O2 requirements of the specific tissue and help the lungfish to survive hypoxic periods; other myoglobins may have taken over the roles of neuroglobin and cytoglobin, which appear to be missing in the West African lungfish.


Assuntos
Peixes/genética , Mioglobina/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Peixes/sangue , Peixes/metabolismo , Duplicação Gênica , Variação Genética , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Oxigênio/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Vertebrados/genética
2.
FEBS J ; 287(8): 1598-1611, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31610084

RESUMO

It is known that the West African lungfish (Protopterus annectens) harbours multiple myoglobin (Mb) genes that are differentially expressed in various tissues and that the Mbs differ in their abilities to confer tolerance towards hypoxia. Here, we show that other lungfish species (Protopterus dolloi, Protopterus aethiopicus and Lepidosiren paradoxa) display a similar diversity of Mb genes and have orthologous Mb genes. To investigate the functional diversification of these genes, we studied the structures, O2 binding properties and nitrite reductase enzymatic activities of recombinantly expressed P. annectens Mbs (PanMbs). CD spectroscopy and small-angle X-ray scattering revealed the typical globin-fold in all investigated recombinant Mbs, indicating a conserved structure. The highest O2 affinity was measured for PanMb2 (P50  = 0.88 Torr at 20 °C), which is mainly expressed in the brain, whereas the muscle-specific PanMb1 has the lowest O2 affinity (P50  = 3.78 Torr at 20 °C), suggesting that tissue-specific O2 requirements have resulted in the emergence of distinct Mb types. Two of the mainly neuronally expressed Mbs (PanMb3 and PanMb4b) have the highest nitrite reductase rates. These data show different O2 binding and enzymatic properties of lungfish Mbs, reflecting multiple subfunctionalisation and neofunctionalisation events that occurred early in the evolution of lungfish. Some Mbs may have also taken over the functions of neuroglobin and cytoglobin, which are widely expressed in vertebrates but appear to be missing in lungfish.


Assuntos
Peixes/genética , Mioglobina/genética , Mioglobina/metabolismo , Animais , Mioglobina/isolamento & purificação , Oxigênio/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
3.
Sci Rep ; 9(1): 280, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670817

RESUMO

Globins are a classical model system for the studies of protein evolution and function. Recent studies have shown that - besides the well-known haemoglobin and myoglobin - additional globin-types occur in vertebrates that serve different functions. Globin E (GbE) was originally identified as an eye-specific protein of birds that is distantly related to myoglobin. GbE is also present in turtles and the coelacanth but appeared to have been lost in other vertebrates. Here, we show that GbE additionally occurs in lungfish, the closest living relatives of the tetrapods. Each lungfish species harbours multiple (≥5) GbE gene copies. Surprisingly, GbE is exclusively and highly expressed in oocytes, with mRNA levels that exceed that of myoglobin in the heart. Thus, GbE is the first known oocyte-specific globin in vertebrates. No GbE transcripts were found in the ovary or egg transcriptomes of other vertebrates, suggesting a lungfish-specific function. Spectroscopic analysis and kinetic studies of recombinant GbE1 of the South American lungfish Lepidosiren paradoxa revealed a typical pentacoordinate globin with myoglobin-like O2-binding kinetics, indicating similar functions. Our findings suggest that the multiple copies of GbE evolved to enhance O2-supply in the developing embryo of lungfish, analogous to the embryonic and fetal haemoglobins of other vertebrates. In evolution, GbE must have changed its expression site from oocytes to eyes, or vice versa.


Assuntos
Evolução Molecular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Globinas/genética , Globinas/metabolismo , Oócitos/química , Oxigênio/metabolismo , Animais , Peixes , Mioglobina/metabolismo , RNA Mensageiro/metabolismo , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA